Portrait de Aaron Courville

Aaron Courville

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur agrégé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Communication efficace dans un jeu de somme générale
Modèles génératifs
Systèmes multi-agents
Théorie des jeux
Traitement du langage naturel
Vision par ordinateur

Biographie

Aaron Courville est professeur au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal et Directeur scientifique à IVADO. Il a obtenu son doctorat au Robotics Institute de l'Université Carnegie Mellon.

Il est l'un des premiers contributeurs à l'apprentissage profond, membre fondateur de Mila – Institut québécois d’intelligence artificielle. Avec Ian Goodfellow et Yoshua Bengio, il a coécrit le manuel de référence sur l'apprentissage profond.

Ses recherches actuelles portent sur le développement de modèles et de méthodes d'apprentissage profond. Il s'intéresse particulièrement à l'apprentissage par renforcement, à l'apprentissage par renforcement multi-agents, aux modèles génératifs profonds et au raisonnement.

Aaron Courville est titulaire d'une chaire en IA Canada-CIFAR et d'une Chaire de recherche du Canada (CRC) en généralisation systématique. Ses recherches ont été soutenues en partie par Microsoft Research, Samsung, Hitachi, Meta, Sony (bourse de recherche) et Google (bourse de recherche ciblée).

Étudiants actuels

Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - Université de Montréal
Maîtrise recherche - UdeM
Maîtrise professionnelle - UdeM
Doctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :

Publications

GuessWhat?! Visual Object Discovery through Multi-modal Dialogue
Harm de Vries
Florian Strub
Olivier Pietquin
We introduce GuessWhat?!, a two-player guessing game as a testbed for research on the interplay of computer vision and dialogue systems. The… (voir plus) goal of the game is to locate an unknown object in a rich image scene by asking a sequence of questions. Higher-level image understanding, like spatial reasoning and language grounding, is required to solve the proposed task. Our key contribution is the collection of a large-scale dataset consisting of 150K human-played games with a total of 800K visual question-answer pairs on 66K images. We explain our design decisions in collecting the dataset and introduce the oracle and questioner tasks that are associated with the two players of the game. We prototyped deep learning models to establish initial baselines of the introduced tasks.
A Closer Look at Memorization in Deep Networks
Devansh Arpit
Stanisław Jastrzębski
Nicolas Ballas
Maxinder S. Kanwal
Asja Fischer
We examine the role of memorization in deep learning, drawing connections to capacity, generalization, and adversarial robustness. While dee… (voir plus)p networks are capable of memorizing noise data, our results suggest that they tend to prioritize learning simple patterns first. In our experiments, we expose qualitative differences in gradient-based optimization of deep neural networks (DNNs) on noise vs. real data. We also demonstrate that for appropriately tuned explicit regularization (e.g., dropout) we can degrade DNN training performance on noise datasets without compromising generalization on real data. Our analysis suggests that the notions of effective capacity which are dataset independent are unlikely to explain the generalization performance of deep networks when trained with gradient based methods because training data itself plays an important role in determining the degree of memorization.
Learning Visual Reasoning Without Strong Priors
Ethan Perez
Harm de Vries
Florian Strub
Vincent Dumoulin
Achieving artificial visual reasoning - the ability to answer image-related questions which require a multi-step, high-level process - is an… (voir plus) important step towards artificial general intelligence. This multi-modal task requires learning a question-dependent, structured reasoning process over images from language. Standard deep learning approaches tend to exploit biases in the data rather than learn this underlying structure, while leading methods learn to visually reason successfully but are hand-crafted for reasoning. We show that a general-purpose, Conditional Batch Normalization approach achieves state-of-the-art results on the CLEVR Visual Reasoning benchmark with a 2.4% error rate. We outperform the next best end-to-end method (4.5%) and even methods that use extra supervision (3.1%). We probe our model to shed light on how it reasons, showing it has learned a question-dependent, multi-step process. Previous work has operated under the assumption that visual reasoning calls for a specialized architecture, but we show that a general architecture with proper conditioning can learn to visually reason effectively.
Multi-modal Variational Encoder-Decoders
Iulian V. Serban
Alexander G. Ororbia II
Recent advances in neural variational inference have facilitated efficient training of powerful directed graphical models with continuous la… (voir plus)tent variables, such as variational autoencoders. However, these models usually assume simple, uni-modal priors — such as the multivariate Gaussian distribution — yet many real-world data distributions are highly complex and multi-modal. Examples of complex and multi-modal distributions range from topics in newswire text to conversational dialogue responses. When such latent variable models are applied to these domains, the restriction of the simple, uni-modal prior hinders the overall expressivity of the learned model as it cannot possibly capture more complex aspects of the data distribution. To overcome this critical restriction, we propose a flexible, simple prior distribution which can be learned efficiently and potentially capture an exponential number of modes of a target distribution. We develop the multi-modal variational encoder-decoder framework and investigate the effectiveness of the proposed prior in several natural language processing modeling tasks, including document modeling and dialogue modeling.
Char2Wav: End-to-End Speech Synthesis
Jose Sotelo
Soroush Mehri
Kundan Kumar
Joao Felipe Santos
Kyle Kastner
We present Char2Wav, an end-to-end model for speech synthesis. Char2Wav has two components: a reader and a neural vocoder . The reader is an… (voir plus) encoder-decoder model with attention. The encoder is a bidirectional recurrent neural network that accepts text or phonemes as inputs, while the decoder is a recurrent neural network (RNN) with attention that produces vocoder acoustic features. Neural vocoder refers to a conditional extension of SampleRNN which generates raw waveform samples from intermediate representations. Unlike traditional models for speech synthesis, Char2Wav learns to produce audio directly from text
Deep Nets Don't Learn via Memorization
Nicolas Ballas
Stanisław Jastrzębski
Devansh Arpit
Maxinder S. Kanwal
Asja Fischer
We use empirical methods to argue that deep neural networks (DNNs) do not achieve their performance by memorizing training data in spite of … (voir plus)overlyexpressive model architectures. Instead, they learn a simple available hypothesis that fits the finite data samples. In support of this view, we establish that there are qualitative differences when learning noise vs. natural datasets, showing: (1) more capacity is needed to fit noise, (2) time to convergence is longer for random labels, but shorter for random inputs, and (3) that DNNs trained on real data examples learn simpler functions than when trained with noise data, as measured by the sharpness of the loss function at convergence. Finally, we demonstrate that for appropriately tuned explicit regularization, e.g. dropout, we can degrade DNN training performance on noise datasets without compromising generalization on real data.
A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues
Sequential data often possesses hierarchical structures with complex dependencies between sub-sequences, such as found between the utterance… (voir plus)s in a dialogue. To model these dependencies in a generative framework, we propose a neural network-based generative architecture, with stochastic latent variables that span a variable number of time steps. We apply the proposed model to the task of dialogue response generation and compare it with other recent neural-network architectures. We evaluate the model performance through a human evaluation study. The experiments demonstrate that our model improves upon recently proposed models and that the latent variables facilitate both the generation of meaningful, long and diverse responses and maintaining dialogue state.
Multiresolution Recurrent Neural Networks: An Application to Dialogue Response Generation
Iulian V. Serban
Tim Klinger
Gerald Tesauro
Kartik Talamadupula
Bowen Zhou
We introduce a new class of models called multiresolution recurrent neural networks, which explicitly model natural language generation at m… (voir plus)ultiple levels of abstraction. The models extend the sequence-to-sequence framework to generate two parallel stochastic processes: a sequence of high-level coarse tokens, and a sequence of natural language words (e.g. sentences). The coarse sequences follow a latent stochastic process with a factorial representation, which helps the models generalize to new examples. The coarse sequences can also incorporate task-specific knowledge, when available. In our experiments, the coarse sequences are extracted using automatic procedures, which are designed to capture compositional structure and semantics. These procedures enable training the multiresolution recurrent neural networks by maximizing the exact joint log-likelihood over both sequences. We apply the models to dialogue response generation in the technical support domain and compare them with several competing models. The multiresolution recurrent neural networks outperform competing models by a substantial margin, achieving state-of-the-art results according to both a human evaluation study and automatic evaluation metrics. Furthermore, experiments show the proposed models generate more fluent, relevant and goal-oriented responses.
Movie Description
Anna Rohrbach
Atousa Torabi
Marcus Rohrbach
Niket Tandon
Bernt Schiele
An Actor-Critic Algorithm for Sequence Prediction
Philemon Brakel
Kelvin Xu
Anirudh Goyal
Ryan Lowe
We present an approach to training neural networks to generate sequences using actor-critic methods from reinforcement learning (RL). Curren… (voir plus)t log-likelihood training methods are limited by the discrepancy between their training and testing modes, as models must generate tokens conditioned on their previous guesses rather than the ground-truth tokens. We address this problem by introducing a textit{critic} network that is trained to predict the value of an output token, given the policy of an textit{actor} network. This results in a training procedure that is much closer to the test phase, and allows us to directly optimize for a task-specific score such as BLEU. Crucially, since we leverage these techniques in the supervised learning setting rather than the traditional RL setting, we condition the critic network on the ground-truth output. We show that our method leads to improved performance on both a synthetic task, and for German-English machine translation. Our analysis paves the way for such methods to be applied in natural language generation tasks, such as machine translation, caption generation, and dialogue modelling.
Adversarially Learned Inference
Vincent Dumoulin
Ishmael Belghazi
Ben Poole
Alex Lamb
Martin Arjovsky
Olivier Mastropietro
We introduce the adversarially learned inference (ALI) model, which jointly learns a generation network and an inference network using an ad… (voir plus)versarial process. The generation network maps samples from stochastic latent variables to the data space while the inference network maps training examples in data space to the space of latent variables. An adversarial game is cast between these two networks and a discriminative network is trained to distinguish between joint latent/data-space samples from the generative network and joint samples from the inference network. We illustrate the ability of the model to learn mutually coherent inference and generation networks through the inspections of model samples and reconstructions and confirm the usefulness of the learned representations by obtaining a performance competitive with state-of-the-art on the semi-supervised SVHN and CIFAR10 tasks.
Brain tumor segmentation with Deep Neural Networks
Mohammad Havaei
Axel Davy
David Warde-Farley
Antoine Biard
Pierre-Marc Jodoin