Portrait de Aaron Courville

Aaron Courville

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Communication efficace dans un jeu de somme générale
Modèles génératifs
Systèmes multi-agents
Théorie des jeux
Traitement du langage naturel
Vision par ordinateur

Biographie

Aaron Courville est professeur au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal et Directeur scientifique à IVADO. Il a obtenu son doctorat au Robotics Institute de l'Université Carnegie Mellon.

Il est l'un des premiers contributeurs à l'apprentissage profond, membre fondateur de Mila – Institut québécois d’intelligence artificielle. Avec Ian Goodfellow et Yoshua Bengio, il a coécrit le manuel de référence sur l'apprentissage profond.

Ses recherches actuelles portent sur le développement de modèles et de méthodes d'apprentissage profond. Il s'intéresse particulièrement à l'apprentissage par renforcement, à l'apprentissage par renforcement multi-agents, aux modèles génératifs profonds et au raisonnement.

Aaron Courville est titulaire d'une chaire en IA Canada-CIFAR et d'une Chaire de recherche du Canada (CRC) en généralisation systématique. Ses recherches ont été soutenues en partie par Microsoft Research, Samsung, Hitachi, Meta, Sony (bourse de recherche) et Google (bourse de recherche ciblée).

Étudiants actuels

Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - University of Waterloo
Maîtrise recherche - Université de Montréal
Doctorat - UdeM
Doctorat - UdeM
Collaborateur·rice de recherche - N/A
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice alumni - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Maîtrise recherche - UdeM
Maîtrise recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :

Publications

Visual Reasoning with Multi-hop Feature Modulation
Mathieu Seurin
Jérémie Mary
P. Preux
Olivier Pietquin
On the Learning Dynamics of Deep Neural Networks
Remi Tachet des Combes
Samira Shabanian
While a lot of progress has been made in recent years, the dynamics of learning in deep nonlinear neural networks remain to this day largely… (voir plus) misunderstood. In this work, we study the case of binary classification and prove various properties of learning in such networks under strong assumptions such as linear separability of the data. Extending existing results from the linear case, we confirm empirical observations by proving that the classification error also follows a sigmoidal shape in nonlinear architectures. We show that given proper initialization, learning expounds parallel independent modes and that certain regions of parameter space might lead to failed training. We also demonstrate that input norm and features' frequency in the dataset lead to distinct convergence speeds which might shed some light on the generalization capabilities of deep neural networks. We provide a comparison between the dynamics of learning with cross-entropy and hinge losses, which could prove useful to understand recent progress in the training of generative adversarial networks. Finally, we identify a phenomenon that we baptize \textit{gradient starvation} where the most frequent features in a dataset prevent the learning of other less frequent but equally informative features.
Approximate Exploration through State Abstraction
Although exploration in reinforcement learning is well understood from a theoretical point of view, provably correct methods remain impracti… (voir plus)cal. In this paper we study the interplay between exploration and approximation, what we call approximate exploration. Our main goal is to further our theoretical understanding of pseudo-count based exploration bonuses (Bellemare et al., 2016), a practical exploration scheme based on density modelling. As a warm-up, we quantify the performance of an exploration algorithm, MBIE-EB (Strehl and Littman, 2008), when explicitly combined with state aggregation. This allows us to confirm that, as might be expected, approximation allows the agent to trade off between learning speed and quality of the learned policy. Next, we show how a given density model can be related to an abstraction and that the corresponding pseudo-count bonus can act as a substitute in MBIE-EB combined with this abstraction, but may lead to either under- or over-exploration. Then, we show that a given density model also defines an implicit abstraction, and find a surprising mismatch between pseudo-counts derived either implicitly or explicitly. Finally we derive a new pseudo-count bonus alleviating this issue.
Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data
Amjad Almahairi
Sai Rajeswar
Philip Bachman
Learning inter-domain mappings from unpaired data can improve performance in structured prediction tasks, such as image segmentation, by red… (voir plus)ucing the need for paired data. CycleGAN was recently proposed for this problem, but critically assumes the underlying inter-domain mapping is approximately deterministic and one-to-one. This assumption renders the model ineffective for tasks requiring flexible, many-to-many mappings. We propose a new model, called Augmented CycleGAN, which learns many-to-many mappings between domains. We examine Augmented CycleGAN qualitatively and quantitatively on several image datasets.
Mutual Information Neural Estimation
We argue that the estimation of mutual information between high dimensional continuous random variables can be achieved by gradient descent … (voir plus)over neural networks. We present a Mutual Information Neural Estimator (MINE) that is linearly scalable in dimensionality as well as in sample size, trainable through back-prop, and strongly consistent. We present a handful of applications on which MINE can be used to minimize or maximize mutual information. We apply MINE to improve adversarially trained generative models. We also use MINE to implement Information Bottleneck, applying it to supervised classification; our results demonstrate substantial improvement in flexibility and performance in these settings.
Neural Autoregressive Flows
Normalizing flows and autoregressive models have been successfully combined to produce state-of-the-art results in density estimation, via M… (voir plus)asked Autoregressive Flows (MAF), and to accelerate state-of-the-art WaveNet-based speech synthesis to 20x faster than real-time, via Inverse Autoregressive Flows (IAF). We unify and generalize these approaches, replacing the (conditionally) affine univariate transformations of MAF/IAF with a more general class of invertible univariate transformations expressed as monotonic neural networks. We demonstrate that the proposed neural autoregressive flows (NAF) are universal approximators for continuous probability distributions, and their greater expressivity allows them to better capture multimodal target distributions. Experimentally, NAF yields state-of-the-art performance on a suite of density estimation tasks and outperforms IAF in variational autoencoders trained on binarized MNIST.
Straight to the Tree: Constituency Parsing with Neural Syntactic Distance
In this work, we propose a novel constituency parsing scheme. The model first predicts a real-valued scalar, named syntactic distance, for e… (voir plus)ach split position in the sentence. The topology of grammar tree is then determined by the values of syntactic distances. Compared to traditional shift-reduce parsing schemes, our approach is free from the potentially disastrous compounding error. It is also easier to parallelize and much faster. Our model achieves the state-of-the-art single model F1 score of 92.1 on PTB and 86.4 on CTB dataset, which surpasses the previous single model results by a large margin.
On the Spectral Bias of Deep Neural Networks
Nasim Rahaman
Felix Draxler
Fred Hamprecht
It is well known that over-parametrized deep neural networks (DNNs) are an overly expressive class of functions that can memorize even rando… (voir plus)m data with
On the Spectral Bias of Neural Networks
Nasim Rahaman
Felix Draxler
Fred Hamprecht
Neural networks are known to be a class of highly expressive functions able to fit even random input-output mappings with …
Manifold Mixup: Encouraging Meaningful On-Manifold Interpolation as a Regularizer
Deep networks often perform well on the data manifold on which they are trained, yet give incorrect (and often very confident) answers when … (voir plus)evaluated on points from off of the training distribution. This is exemplified by the adversarial examples phenomenon but can also be seen in terms of model generalization and domain shift. We propose Manifold Mixup which encourages the network to produce more reasonable and less confident predictions at points with combinations of attributes not seen in the training set. This is accomplished by training on convex combinations of the hidden state representations of data samples. Using this method, we demonstrate improved semi-supervised learning, learning with limited labeled data, and robustness to adversarial examples. Manifold Mixup requires no (significant) additional computation. Analytical experiments on both real data and synthetic data directly support our hypothesis for why the Manifold Mixup method improves results.
MINE: Mutual Information Neural Estimation
Ishmael Belghazi
Sai Rajeswar
This paper presents a Mutual Information Neural Estimator (MINE) that is linearly scalable in dimensionality as well as in sample size. MINE… (voir plus) is back-propable and we prove that it is strongly consistent. We illustrate a handful of applications in which MINE is succesfully applied to enhance the property of generative models in both unsupervised and supervised settings. We apply our framework to estimate the information bottleneck, and apply it in tasks related to supervised classification problems. Our results demonstrate substantial added flexibility and improvement in these settings.