Portrait de Aaron Courville

Aaron Courville

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Communication efficace dans un jeu de somme générale
Modèles génératifs
Systèmes multi-agents
Théorie des jeux
Traitement du langage naturel
Vision par ordinateur

Biographie

Aaron Courville est professeur au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal et Directeur scientifique à IVADO. Il a obtenu son doctorat au Robotics Institute de l'Université Carnegie Mellon.

Il est l'un des premiers contributeurs à l'apprentissage profond, membre fondateur de Mila – Institut québécois d’intelligence artificielle. Avec Ian Goodfellow et Yoshua Bengio, il a coécrit le manuel de référence sur l'apprentissage profond.

Ses recherches actuelles portent sur le développement de modèles et de méthodes d'apprentissage profond. Il s'intéresse particulièrement à l'apprentissage par renforcement, à l'apprentissage par renforcement multi-agents, aux modèles génératifs profonds et au raisonnement.

Aaron Courville est titulaire d'une chaire en IA Canada-CIFAR et d'une Chaire de recherche du Canada (CRC) en généralisation systématique. Ses recherches ont été soutenues en partie par Microsoft Research, Samsung, Hitachi, Meta, Sony (bourse de recherche) et Google (bourse de recherche ciblée).

Étudiants actuels

Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - University of Waterloo
Maîtrise recherche - Université de Montréal
Doctorat - UdeM
Doctorat - UdeM
Collaborateur·rice de recherche - N/A
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice alumni - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Maîtrise recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :

Publications

Recurrent Batch Normalization
Tim Cooijmans
Nicolas Ballas
César Laurent
Caglar Gulcehre
We propose a reparameterization of LSTM that brings the benefits of batch normalization to recurrent neural networks. Whereas previous works… (voir plus) only apply batch normalization to the input-to-hidden transformation of RNNs, we demonstrate that it is both possible and beneficial to batch-normalize the hidden-to-hidden transition, thereby reducing internal covariate shift between time steps. We evaluate our proposal on various sequential problems such as sequence classification, language modeling and question answering. Our empirical results show that our batch-normalized LSTM consistently leads to faster convergence and improved generalization.
SampleRNN: An Unconditional End-to-End Neural Audio Generation Model
Soroush Mehri
Kundan Kumar
Ishaan Gulrajani
Rithesh Kumar
Shubham Jain
Jose Sotelo
In this paper we propose a novel model for unconditional audio generation task that generates one audio sample at a time. We show that our m… (voir plus)odel which profits from combining memory-less modules, namely autoregressive multilayer perceptron, and stateful recurrent neural networks in a hierarchical structure is de facto powerful to capture the underlying sources of variations in temporal domain for very long time on three datasets of different nature. Human evaluation on the generated samples indicate that our model is preferred over competing models. We also show how each component of the model contributes to the exhibited performance.
Sequentialized Sampling Importance Resampling and Scalable IWAE
Chin-Wei Huang
We propose a new sequential algorithm for Sampling Importance Resampling. The algorithm serves as a solution to expensive evaluation of impo… (voir plus)rtance weight, and can be interpreted as stochastically and iteratively refining the particles by correcting them towards the target distribution as pool size increases. We apply this algorithm to variational inference with Importance Weighted Lower Bound and propose a memory-scalable training procedure 1 that implicitly improves the variational proposal. 1 Sequentializing Sampling Importance Resampling 1.1 Sampling Importance Resampling Given an unnormalized target distribution p̃(x) and proposal distribution q(x), the Sampling Importance Resampling (SIR) proceeds as follows: 1. draw xi for 1 ≤ i ≤ n from q(x) 2. calculate the importance weight wi = p̃(xi) q(xi) 3. calculate the normalized importance weight w̄i = wi ∑ i wi 4. draw index variable yj ∼ mul(w̄1, ..., w̄n) for 1 ≤ j ≤ m The density of the set of resampled particles xy1 , ..., xym should resemble the pdf of the target distribution, and the new samples will be approximately distributed by p(x) (Bishop, 2007). On average, the samples can be improved by increasing the pool size n, and becomes corrected when n→∞. The procedure is visualized in Figure 1a. 1.2 SeqSIR The above procedure can be combined with the idea of reservoir sampling, so that we need not evaluate all n samples at the same time, which will be an issue when n is large or when evaluation of a sample (i.e. computation of wi) is expensive. The intuition is to keep a running sum of the importance weights while we evaluate the pool samples sequentially, and then decide to keep the old sample or replace it with the new one based on the ratio of the new sample’s importance weight to the running sum. This is what we call Sequentialized Sampling Importance Resampling (SEQSIR), which is summarized in Algorithm 1. See Figure 1b for illustration. Note that density and importance weight are computed on log scale to deal with numerical instability, and log-sum-exp operation (LSE) is used in place of addition to calculate the running sum of See https://github.com/CW-Huang/SeqIWAE for implementation. Second workshop on Bayesian Deep Learning (NIPS 2017), Long Beach, CA, USA. Algorithm 1 Sequentialized Sampling Importance Resampling and Stochastic Iterative Refinement procedure SEQSIR ( logp, logq . unnormalized target density function and proposal density function ss . n samples to be evaluated ) A←−∞ . initialize accumulated sum of importance weight on log scale s_old← 0 . initialize sample n← len([s1,...,sn]) for i=1,...,n do s_new = ss[i] A, s_old← STOCHREFINE(logp, logq, A, s_old, s_new) return s_old procedure STOCHREFINE ( logp, logq . unnormalized target density function and proposal density function A . accumulated sum of importance weight on log scale s_old, s_new . old and new samples ) w_new← logp(s_new) logq(s_new) A← LSE(A, w_new) u← unif(0,1) if w_new A >= log u then return A, s_new else return A, s_old
A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images
David Vazquez
Jorge Bernal
F. Javier Sánchez
Gloria Fernández-Esparrach
Antonio M. López
Michal Drozdzal
Colorectal cancer (CRC) is the third cause of cancer death worldwide. Currently, the standard approach to reduce CRC-related mortality is to… (voir plus) perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss rate and the inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing decision support systems (DSS) aiming to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image segmentation, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. The proposed dataset consists of 4 relevant classes to inspect the endoluminal scene, targeting different clinical needs. Together with the dataset and taking advantage of advances in semantic segmentation literature, we provide new baselines by training standard fully convolutional networks (FCNs). We perform a comparative study to show that FCNs significantly outperform, without any further postprocessing, prior results in endoluminal scene segmentation, especially with respect to polyp segmentation and localization.
Professor Forcing: A New Algorithm for Training Recurrent Networks
Anirudh Goyal
Alex Lamb
Ying Zhang
Saizheng Zhang
The Teacher Forcing algorithm trains recurrent networks by supplying observed sequence values as inputs during training and using the networ… (voir plus)k’s own one-step-ahead predictions to do multi-step sampling. We introduce the Professor Forcing algorithm, which uses adversarial domain adaptation to encourage the dynamics of the recurrent network to be the same when training the network and when sampling from the network over multiple time steps. We apply Professor Forcing to language modeling, vocal synthesis on raw waveforms, handwriting generation, and image generation. Empirically we find that Professor Forcing acts as a regularizer, improving test likelihood on character level Penn Treebank and sequential MNIST. We also find that the model qualitatively improves samples, especially when sampling for a large number of time steps. This is supported by human evaluation of sample quality. Trade-offs between Professor Forcing and Scheduled Sampling are discussed. We produce T-SNEs showing that Professor Forcing successfully makes the dynamics of the network during training and sampling more similar.
Towards End-to-End Speech Recognition with Deep Convolutional Neural Networks
Ying Zhang
Philemon Brakel
Saizheng Zhang
César Laurent
Convolutional Neural Networks (CNNs) are effective models for reducing spectral variations and modeling spectral correlations in acoustic fe… (voir plus)atures for automatic speech recognition (ASR). Hybrid speech recognition systems incorporating CNNs with Hidden Markov Models/Gaussian Mixture Models (HMMs/GMMs) have achieved the state-of-the-art in various benchmarks. Meanwhile, Connectionist Temporal Classification (CTC) with Recurrent Neural Networks (RNNs), which is proposed for labeling unsegmented sequences, makes it feasible to train an end-to-end speech recognition system instead of hybrid settings. However, RNNs are computationally expensive and sometimes difficult to train. In this paper, inspired by the advantages of both CNNs and the CTC approach, we propose an end-to-end speech framework for sequence labeling, by combining hierarchical CNNs with CTC directly without recurrent connections. By evaluating the approach on the TIMIT phoneme recognition task, we show that the proposed model is not only computationally efficient, but also competitive with the existing baseline systems. Moreover, we argue that CNNs have the capability to model temporal correlations with appropriate context information.
Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid Question-Answer Corpus
Iulian V. Serban
Alberto García-Durán
Caglar Gulcehre
Sungjin Ahn
Over the past decade, large-scale supervised learning corpora have enabled machine learning researchers to make substantial advances. Howeve… (voir plus)r, to this date, there are no large-scale question-answer corpora available. In this paper we present the 30M Factoid Question-Answer Corpus, an enormous question answer pair corpus produced by applying a novel neural network architecture on the knowledge base Freebase to transduce facts into natural language questions. The produced question answer pairs are evaluated both by human evaluators and using automatic evaluation metrics, including well-established machine translation and sentence similarity metrics. Across all evaluation criteria the question-generation model outperforms the competing template-based baseline. Furthermore, when presented to human evaluators, the generated questions appear comparable in quality to real human-generated questions.
Deconstructing the Ladder Network Architecture
Linxi Fan
Philemon Brakel
The Ladder Network is a recent new approach to semi-supervised learning that turned out to be very successful. While showing impressive perf… (voir plus)ormance, the Ladder Network has many components intertwined, whose contributions are not obvious in such a complex architecture. This paper presents an extensive experimental investigation of variants of the Ladder Network in which we replaced or removed individual components to learn about their relative importance. For semi-supervised tasks, we conclude that the most important contribution is made by the lateral connections, followed by the application of noise, and the choice of what we refer to as the 'combinator function'. As the number of labeled training examples increases, the lateral connections and the reconstruction criterion become less important, with most of the generalization improvement coming from the injection of noise in each layer. Finally, we introduce a combinator function that reduces test error rates on Permutation-Invariant MNIST to 0.57% for the supervised setting, and to 0.97% and 1.0% for semi-supervised settings with 1000 and 100 labeled examples, respectively.
First Result on Arabic Neural Machine Translation
Amjad Almahairi
Kyunghyun Cho
Nizar Habash
Neural machine translation has become a major alternative to widely used phrase-based statistical machine translation. We notice however tha… (voir plus)t much of research on neural machine translation has focused on European languages despite its language agnostic nature. In this paper, we apply neural machine translation to the task of Arabic translation (Ar En) and compare it against a standard phrase-based translation system. We run extensive comparison using various configurations in preprocessing Arabic script and show that the phrase-based and neural translation systems perform comparably to each other and that proper preprocessing of Arabic script has a similar effect on both of the systems. We however observe that the neural machine translation significantly outperform the phrase-based system on an out-of-domain test set, making it attractive for real-world deployment.
Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations
J'anos Kram'ar
Nicolas Ballas
Nan Rosemary Ke
Anirudh Goyal
We propose zoneout, a novel method for regularizing RNNs. At each timestep, zoneout stochastically forces some hidden units to maintain thei… (voir plus)r previous values. Like dropout, zoneout uses random noise to train a pseudo-ensemble, improving generalization. But by preserving instead of dropping hidden units, gradient information and state information are more readily propagated through time, as in feedforward stochastic depth networks. We perform an empirical investigation of various RNN regularizers, and find that zoneout gives significant performance improvements across tasks. We achieve competitive results with relatively simple models in character- and word-level language modelling on the Penn Treebank and Text8 datasets, and combining with recurrent batch normalization yields state-of-the-art results on permuted sequential MNIST.
Movie Description
Anna Rohrbach
Atousa Torabi
Marcus Rohrbach
Niket Tandon
Bernt Schiele
Movie Description
Anna Rohrbach
Atousa Torabi
Marcus Rohrbach
Niket Tandon
Bernt Schiele