Portrait of Ryan Lowe is unavailable

Ryan Lowe

Alumni

Publications

Introduction to NIPS 2017 Competition Track
Sergio Escalera
Markus Weimer
Mikhail Burtsev
Valentin Malykh
Varvara Logacheva
Iulian V. Serban
Alexander Rudnicky
Alan W. Black
Shrimai Prabhumoye
Łukasz Kidziński
Sharada Prasanna Mohanty
Carmichael F. Ong
Jennifer L. Hicks
Sergey Levine
Marcel Salathé
Scott Delp
Iker Huerga
Alexander Grigorenko … (see 19 more)
Leifur Thorbergsson
Anasuya Das
Kyla Nemitz
Jenna Sandker
Stephen King
Alexander S. Ecker
Leon A. Gatys
Matthias Bethge
Jordan Boyd-Graber
Shi Feng
Pedro Rodriguez
Mohit Iyyer
He He
Hal Daumé III
Sean McGregor
Amir Banifatemi
Alexey Kurakin
Ian G Goodfellow
The First Conversational Intelligence Challenge
Mikhail Burtsev
Varvara Logacheva
Valentin Malykh
Iulian V. Serban
Shrimai Prabhumoye
Alan W. Black
Alexander Rudnicky
World Knowledge for Reading Comprehension: Rare Entity Prediction with Hierarchical LSTMs Using External Descriptions
Humans interpret texts with respect to some background information, or world knowledge, and we would like to develop automatic reading compr… (see more)ehension systems that can do the same. In this paper, we introduce a task and several models to drive progress towards this goal. In particular, we propose the task of rare entity prediction: given a web document with several entities removed, models are tasked with predicting the correct missing entities conditioned on the document context and the lexical resources. This task is challenging due to the diversity of language styles and the extremely large number of rare entities. We propose two recurrent neural network architectures which make use of external knowledge in the form of entity descriptions. Our experiments show that our hierarchical LSTM model performs significantly better at the rare entity prediction task than those that do not make use of external resources.
A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues
Sequential data often possesses hierarchical structures with complex dependencies between sub-sequences, such as found between the utterance… (see more)s in a dialogue. To model these dependencies in a generative framework, we propose a neural network-based generative architecture, with stochastic latent variables that span a variable number of time steps. We apply the proposed model to the task of dialogue response generation and compare it with other recent neural-network architectures. We evaluate the model performance through a human evaluation study. The experiments demonstrate that our model improves upon recently proposed models and that the latent variables facilitate both the generation of meaningful, long and diverse responses and maintaining dialogue state.
An Actor-Critic Algorithm for Sequence Prediction
We present an approach to training neural networks to generate sequences using actor-critic methods from reinforcement learning (RL). Curren… (see more)t log-likelihood training methods are limited by the discrepancy between their training and testing modes, as models must generate tokens conditioned on their previous guesses rather than the ground-truth tokens. We address this problem by introducing a textit{critic} network that is trained to predict the value of an output token, given the policy of an textit{actor} network. This results in a training procedure that is much closer to the test phase, and allows us to directly optimize for a task-specific score such as BLEU. Crucially, since we leverage these techniques in the supervised learning setting rather than the traditional RL setting, we condition the critic network on the ground-truth output. We show that our method leads to improved performance on both a synthetic task, and for German-English machine translation. Our analysis paves the way for such methods to be applied in natural language generation tasks, such as machine translation, caption generation, and dialogue modelling.
A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues
Sequential data often possesses hierarchical structures with complex dependencies between sub-sequences, such as found between the utterance… (see more)s in a dialogue. To model these dependencies in a generative framework, we propose a neural network-based generative architecture, with stochastic latent variables that span a variable number of time steps. We apply the proposed model to the task of dialogue response generation and compare it with other recent neural-network architectures. We evaluate the model performance through a human evaluation study. The experiments demonstrate that our model improves upon recently proposed models and that the latent variables facilitate both the generation of meaningful, long and diverse responses and maintaining dialogue state.