Portrait of Aaron Courville

Aaron Courville

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Computer Vision
Deep Learning
Efficient Communication in General Sum Game
Game Theory
Generative Models
Multi-Agent Systems
Natural Language Processing
Reinforcement Learning
Representation Learning

Biography

Aaron Courville is a professor in the Department of Computer Science and Operations Research (DIRO) at Université de Montréal and Scientific Director of IVADO. He has a PhD from the Robotics Institute, Carnegie Mellon University.

Courville was an early contributor to deep learning: he is a founding member of Mila – Quebec Artificial Intelligence Institute. Together with Ian Goodfellow and Yoshua Bengio, he co-wrote the seminal textbook on deep learning.

His current research focuses on the development of deep learning models and methods. He is particularly interested in reinforcement learning, multi-agent reinforcement learning, deep generative models and reasoning.

Courville holds a Canada CIFAR AI Chair and a Canada Research Chair in Systematic Generalization. His research has been supported by Microsoft Research, Samsung, Hitachi, Meta, Sony (Research Award) and Google (Focused Research Award).

Current Students

PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - University of Waterloo
Master's Research - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Collaborating researcher - N/A
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
Master's Research - Université de Montréal
Master's Research - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :

Publications

Movie Description
Anna Rohrbach
Marcus Rohrbach
Niket Tandon
Bernt Schiele
An Actor-Critic Algorithm for Sequence Prediction
We present an approach to training neural networks to generate sequences using actor-critic methods from reinforcement learning (RL). Curren… (see more)t log-likelihood training methods are limited by the discrepancy between their training and testing modes, as models must generate tokens conditioned on their previous guesses rather than the ground-truth tokens. We address this problem by introducing a textit{critic} network that is trained to predict the value of an output token, given the policy of an textit{actor} network. This results in a training procedure that is much closer to the test phase, and allows us to directly optimize for a task-specific score such as BLEU. Crucially, since we leverage these techniques in the supervised learning setting rather than the traditional RL setting, we condition the critic network on the ground-truth output. We show that our method leads to improved performance on both a synthetic task, and for German-English machine translation. Our analysis paves the way for such methods to be applied in natural language generation tasks, such as machine translation, caption generation, and dialogue modelling.
Adversarially Learned Inference
We introduce the adversarially learned inference (ALI) model, which jointly learns a generation network and an inference network using an ad… (see more)versarial process. The generation network maps samples from stochastic latent variables to the data space while the inference network maps training examples in data space to the space of latent variables. An adversarial game is cast between these two networks and a discriminative network is trained to distinguish between joint latent/data-space samples from the generative network and joint samples from the inference network. We illustrate the ability of the model to learn mutually coherent inference and generation networks through the inspections of model samples and reconstructions and confirm the usefulness of the learned representations by obtaining a performance competitive with state-of-the-art on the semi-supervised SVHN and CIFAR10 tasks.
Brain tumor segmentation with Deep Neural Networks
Calibrating Energy-based Generative Adversarial Networks
Amjad Almahairi
Philip Bachman
Eduard Hovy
In this paper, we propose to equip Generative Adversarial Networks with the ability to produce direct energy estimates for samples. Specific… (see more)ally, we propose a flexible adversarial training framework, and prove this framework not only ensures the generator converges to the true data distribution, but also enables the discriminator to retain the density information at the global optimal. We derive the analytic form of the induced solution, and analyze the properties. In order to make the proposed framework trainable in practice, we introduce two effective approximation techniques. Empirically, the experiment results closely match our theoretical analysis, verifying the discriminator is able to recover the energy of data distribution.
Facilitating Multimodality in Normalizing Flows
The true Bayesian posterior of a model such as a neural network may be highly multimodal. In principle, normalizing flows can represent such… (see more) a distribution via compositions of invertible transformations of random noise. In practice, however, existing normalizing flows may fail to capture most of the modes of a distribution. We argue that the conditionally affine structure of the transformations used in [Dinh et al., 2014, 2016, Kingma et al., 2016] is inefficient, and show that flows which instead use (conditional) invertible non-linear transformations naturally enable multimodality in their output distributions. With just two layers of our proposed deep sigmoidal flow, we are able to model complicated 2d energy functions with much higher fidelity than six layers of deep affine flows.
GibbsNet: Iterative Adversarial Inference for Deep Graphical Models
Directed latent variable models that formulate the joint distribution as …
Improved Training of Wasserstein GANs
Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserste… (see more)in GAN (WGAN) makes progress toward stable training of GANs, but sometimes can still generate only low-quality samples or fail to converge. We find that these problems are often due to the use of weight clipping in WGAN to enforce a Lipschitz constraint on the critic, which can lead to undesired behavior. We propose an alternative to clipping weights: penalize the norm of gradient of the critic with respect to its input. Our proposed method performs better than standard WGAN and enables stable training of a wide variety of GAN architectures with almost no hyperparameter tuning, including 101-layer ResNets and language models over discrete data. We also achieve high quality generations on CIFAR-10 and LSUN bedrooms.
Modulating early visual processing by language
It is commonly assumed that language refers to high-level visual concepts while leaving low-level visual processing unaffected. This view do… (see more)minates the current literature in computational models for language-vision tasks, where visual and linguistic input are mostly processed independently before being fused into a single representation. In this paper, we deviate from this classic pipeline and propose to modulate the \emph{entire visual processing} by linguistic input. Specifically, we condition the batch normalization parameters of a pretrained residual network (ResNet) on a language embedding. This approach, which we call MOdulated RESnet (\MRN), significantly improves strong baselines on two visual question answering tasks. Our ablation study shows that modulating from the early stages of the visual processing is beneficial.
Piecewise Latent Variables for Neural Variational Text Processing
Iulian V. Serban
Alexander G. Ororbia II
Advances in neural variational inference have facilitated the learning of powerful directed graphical models with continuous latent variable… (see more)s, such as variational autoencoders. The hope is that such models will learn to represent rich, multi-modal latent factors in real-world data, such as natural language text. However, current models often assume simplistic priors on the latent variables - such as the uni-modal Gaussian distribution - which are incapable of representing complex latent factors efficiently. To overcome this restriction, we propose the simple, but highly flexible, piecewise constant distribution. This distribution has the capacity to represent an exponential number of modes of a latent target distribution, while remaining mathematically tractable. Our results demonstrate that incorporating this new latent distribution into different models yields substantial improvements in natural language processing tasks such as document modeling and natural language generation for dialogue.
PixelVAE: A Latent Variable Model for Natural Images
Natural image modeling is a landmark challenge of unsupervised learning. Variational Autoencoders (VAEs) learn a useful latent representatio… (see more)n and model global structure well but have difficulty capturing small details. PixelCNN models details very well, but lacks a latent code and is difficult to scale for capturing large structures. We present PixelVAE, a VAE model with an autoregressive decoder based on PixelCNN. Our model requires very few expensive autoregressive layers compared to PixelCNN and learns latent codes that are more compressed than a standard VAE while still capturing most non-trivial structure. Finally, we extend our model to a hierarchy of latent variables at different scales. Our model achieves state-of-the-art performance on binarized MNIST, competitive performance on 64 × 64 ImageNet, and high-quality samples on the LSUN bedrooms dataset.
Recurrent Batch Normalization
We propose a reparameterization of LSTM that brings the benefits of batch normalization to recurrent neural networks. Whereas previous works… (see more) only apply batch normalization to the input-to-hidden transformation of RNNs, we demonstrate that it is both possible and beneficial to batch-normalize the hidden-to-hidden transition, thereby reducing internal covariate shift between time steps. We evaluate our proposal on various sequential problems such as sequence classification, language modeling and question answering. Our empirical results show that our batch-normalized LSTM consistently leads to faster convergence and improved generalization.