Portrait of Yoshua Bengio

Yoshua Bengio

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research Department
Scientific Director, Leadership Team
Observer, Board of Directors, Mila
Research Topics
Causality
Computational Neuroscience
Deep Learning
Generative Models
Graph Neural Networks
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Natural Language Processing
Probabilistic Models
Reasoning
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Biography

*For media requests, please write to medias@mila.quebec.

For more information please contact Julie Mongeau, executive assistant at julie.mongeau@mila.quebec.

Yoshua Bengio is recognized worldwide as a leading expert in AI. He is most known for his pioneering work in deep learning, which earned him the 2018 A.M. Turing Award, “the Nobel Prize of computing,” with Geoffrey Hinton and Yann LeCun.

Bengio is a full professor at Université de Montréal, and the founder and scientific director of Mila – Quebec Artificial Intelligence Institute. He is also a senior fellow at CIFAR and co-directs its Learning in Machines & Brains program, serves as scientific director of IVADO, and holds a Canada CIFAR AI Chair.

In 2019, Bengio was awarded the prestigious Killam Prize and in 2022, he was the most cited computer scientist in the world by h-index. He is a Fellow of the Royal Society of London, Fellow of the Royal Society of Canada, Knight of the Legion of Honor of France and Officer of the Order of Canada. In 2023, he was appointed to the UN’s Scientific Advisory Board for Independent Advice on Breakthroughs in Science and Technology.

Concerned about the social impact of AI, Bengio helped draft the Montréal Declaration for the Responsible Development of Artificial Intelligence and continues to raise awareness about the importance of mitigating the potentially catastrophic risks associated with future AI systems.

Current Students

Research Intern - McGill University
Research Intern - Université de Montréal
PhD - Université de Montréal
Collaborating Alumni
Research Intern - Université du Québec à Rimouski
Professional Master's - Université de Montréal
Independent visiting researcher
Co-supervisor :
Independent visiting researcher - UQAR
PhD - Université de Montréal
Research Intern - UQAR
PhD - Université de Montréal
Independent visiting researcher - MIT
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Collaborating researcher - Université Paris-Saclay
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Massachusetts Institute of Technology
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Barcelona University
Research Intern - Université de Montréal
Professional Master's - Université de Montréal
Collaborating researcher - Université de Montréal
Collaborating researcher
Postdoctorate - Université de Montréal
Co-supervisor :
Independent visiting researcher - Technical University Munich (TUM)
PhD - Université de Montréal
Research Intern - Université de Montréal
Master's Research - Université de Montréal
Co-supervisor :
Research Intern - Université de Montréal
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Postdoctorate - Université de Montréal
PhD - Université de Montréal
Collaborating Alumni
Research Intern - Université de Montréal
Collaborating Alumni
PhD - Université de Montréal
Principal supervisor :
Research Intern - McGill University
Research Intern - Imperial College London
PhD - Université de Montréal
Research Intern - Université de Montréal
Collaborating Alumni - Université de Montréal
DESS - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Postdoctorate - Université de Montréal
Collaborating Alumni
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Independent visiting researcher - Université de Montréal
Independent visiting researcher - Hong Kong University of Science and Technology (HKUST)
Collaborating researcher - Ying Wu Coll of Computing
PhD - University of Waterloo
Principal supervisor :
PhD - Max-Planck-Institute for Intelligent Systems
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - Université de Montréal
Independent visiting researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher
Principal supervisor :
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Master's Research - Université de Montréal
Research Intern - Université de Montréal
Research Intern - Université de Montréal
Master's Research - Université de Montréal
Collaborating Alumni
Independent visiting researcher - Technical University of Munich
PhD - École Polytechnique Montréal Fédérale de Lausanne
Postdoctorate - Polytechnique Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher
Principal supervisor :
Postdoctorate - Université de Montréal
Collaborating researcher - Valence
Principal supervisor :
Postdoctorate - Université de Montréal
Co-supervisor :
Collaborating researcher - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Principal supervisor :
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
Research Intern - Université de Montréal
PhD - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :

Publications

Towards equilibrium molecular conformation generation with GFlowNets
Alexandra Volokhova
Michał Koziarski
Alex Hernandez-Garcia
Cheng-Hao Liu
Santiago Miret
Pablo Lemos
Luca Thiede
Zichao Yan
Alan Aspuru-Guzik
Sampling diverse, thermodynamically feasible molecular conformations plays a crucial role in predicting properties of a molecule. In this pa… (see more)per we propose to use GFlowNet for sampling conformations of small molecules from the Boltzmann distribution, as determined by the molecule's energy. The proposed approach can be used in combination with energy estimation methods of different fidelity and discovers a diverse set of low-energy conformations for highly flexible drug-like molecules. We demonstrate that GFlowNet can reproduce molecular potential energy surfaces by sampling proportionally to the Boltzmann distribution.
Managing AI Risks in an Era of Rapid Progress
Geoffrey Hinton
Andrew Yao
Dawn Song
Pieter Abbeel
Yuval Noah Harari
Trevor Darrell
Ya-Qin Zhang
Lan Xue
Shai Shalev-Shwartz
Gillian K. Hadfield
Jeff Clune
Frank Hutter
Atilim Güneş Baydin
Sheila McIlraith
Qiqi Gao
Ashwin Acharya
Anca Dragan … (see 5 more)
Philip Torr
Stuart Russell
Daniel Kahneman
Jan Brauner
Sören Mindermann
Causal machine learning for single-cell genomics
Alejandro Tejada-Lapuerta
Paul Bertin
Stefan Bauer
Hananeh Aliee
Fabian J. Theis
A cry for help: Early detection of brain injury in newborns
Charles Onu
Samantha Latremouille
Arsenii Gorin
Junhao Wang
Uchenna Ekwochi
P. Ubuane
O. Kehinde
Muhammad A. Salisu
Datonye Briggs
Crystal-GFN: sampling crystals with desirable properties and constraints
Alex Hernandez-Garcia
Alexandre AGM Duval
Alexandra Volokhova
Divya Sharma
pierre luc carrier
Michał Koziarski
Victor Schmidt
Accelerating material discovery holds the potential to greatly help mitigate the climate crisis. Discovering new solid-state materials such … (see more)as electrocatalysts, super-ionic conductors or photovoltaic materials can have a crucial impact, for instance, in improving the efficiency of renewable energy production and storage. In this paper, we introduce Crystal-GFN, a generative model of crystal structures that sequentially samples structural properties of crystalline materials, namely the space group, composition and lattice parameters. This domain-inspired approach enables the flexible incorporation of physical and structural hard constraints, as well as the use of any available predictive model of a desired physicochemical property as an objective function. To design stable materials, one must target the candidates with the lowest formation energy. Here, we use as objective the formation energy per atom of a crystal structure predicted by a new proxy machine learning model trained on MatBench. The results demonstrate that Crystal-GFN is able to sample highly diverse crystals with low (median -3.1 eV/atom) predicted formation energy.
Causal Inference in Gene Regulatory Networks with GFlowNet: Towards Scalability in Large Systems
Trang Nguyen
Alexander Tong
Kanika Madan
Dianbo Liu
Understanding causal relationships within Gene Regulatory Networks (GRNs) is essential for unraveling the gene interactions in cellular proc… (see more)esses. However, causal discovery in GRNs is a challenging problem for multiple reasons including the existence of cyclic feedback loops and uncertainty that yields diverse possible causal structures. Previous works in this area either ignore cyclic dynamics (assume acyclic structure) or struggle with scalability. We introduce Swift-DynGFN as a novel framework that enhances causal structure learning in GRNs while addressing scalability concerns. Specifically, Swift-DynGFN exploits gene-wise independence to boost parallelization and to lower computational cost. Experiments on real single-cell RNA velocity and synthetic GRN datasets showcase the advancement in learning causal structure in GRNs and scalability in larger systems.
Local Search GFlowNets
Minsu Kim
Taeyoung Yun
Emmanuel Bengio
Dinghuai Zhang
Sungsoo Ahn
Jinkyoo Park
Generative Flow Networks (GFlowNets) are amortized sampling methods that learn a distribution over discrete objects proportional to their re… (see more)wards. GFlowNets exhibit a remarkable ability to generate diverse samples, yet occasionally struggle to consistently produce samples with high rewards due to over-exploration on wide sample space. This paper proposes to train GFlowNets with local search, which focuses on exploiting high-rewarded sample space to resolve this issue. Our main idea is to explore the local neighborhood via backtracking and reconstruction guided by backward and forward policies, respectively. This allows biasing the samples toward high-reward solutions, which is not possible for a typical GFlowNet solution generation scheme, which uses the forward policy to generate the solution from scratch. Extensive experiments demonstrate a remarkable performance improvement in several biochemical tasks. Source code is available: https://github.com/dbsxodud-11/ls_gfn.
Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts in Underspecified Visual Tasks
Luca Scimeca
Alexander Rubinstein
Armand Nicolicioiu
Damien Teney
Spurious correlations in the data, where multiple cues are predictive of the target labels, often lead to shortcut learning phenomena, where… (see more) a model may rely on erroneous, easy-to-learn, cues while ignoring reliable ones. In this work, we propose an ensemble diversification framework exploiting the generation of synthetic counterfactuals using Diffusion Probabilistic Models (DPMs). We discover that DPMs have the inherent capability to represent multiple visual cues independently, even when they are largely correlated in the training data. We leverage this characteristic to encourage model diversity and empirically show the efficacy of the approach with respect to several diversification objectives. We show that diffusion-guided diversification can lead models to avert attention from shortcut cues, achieving ensemble diversity performance comparable to previous methods requiring additional data collection.
AI and Catastrophic Risk
Tree Cross Attention
Leo Feng
Frederick Tung
Hossein Hajimirsadeghi
Mohamed Osama Ahmed
RECOVER identifies synergistic drug combinations in vitro through sequential model optimization
Paul Bertin
Jarrid Rector-Brooks
Deepak Sharma
Thomas Gaudelet
Andrew Anighoro
Torsten Gross
Francisco Martínez-Peña
Eileen L. Tang
M.S. Suraj
Cristian Regep
Jeremy B.R. Hayter
Maksym Korablyov
Nicholas Valiante
Almer van der Sloot
Mike Tyers
Charles E.S. Roberts
Michael M. Bronstein
Luke L. Lairson
Jake P. Taylor-King
GEO-Bench: Toward Foundation Models for Earth Monitoring
Alexandre Lacoste
Nils Lehmann
Pau Rodriguez
Evan David Sherwin
Hannah Kerner
Björn Lütjens
Jeremy Andrew Irvin
David Dao
Hamed Alemohammad
Mehmet Gunturkun
Gabriel Huang
David Vazquez
Dava Newman
Stefano Ermon
Xiao Xiang Zhu
Recent progress in self-supervision has shown that pre-training large neural networks on vast amounts of unsupervised data can lead to subst… (see more)antial increases in generalization to downstream tasks. Such models, recently coined foundation models, have been transformational to the field of natural language processing. Variants have also been proposed for image data, but their applicability to remote sensing tasks is limited. To stimulate the development of foundation models for Earth monitoring, we propose a benchmark comprised of six classification and six segmentation tasks, which were carefully curated and adapted to be both relevant to the field and well-suited for model evaluation. We accompany this benchmark with a robust methodology for evaluating models and reporting aggregated results to enable a reliable assessment of progress. Finally, we report results for 20 baselines to gain information about the performance of existing models. We believe that this benchmark will be a driver of progress across a variety of Earth monitoring tasks.