Portrait of Yoshua Bengio

Yoshua Bengio

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research Department
Scientific Director, Leadership Team
Observer, Board of Directors, Mila
Research Topics
Causality
Computational Neuroscience
Deep Learning
Generative Models
Graph Neural Networks
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Natural Language Processing
Probabilistic Models
Reasoning
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Biography

*For media requests, please write to medias@mila.quebec.

For more information please contact Julie Mongeau, executive assistant at julie.mongeau@mila.quebec.

Yoshua Bengio is recognized worldwide as a leading expert in AI. He is most known for his pioneering work in deep learning, which earned him the 2018 A.M. Turing Award, “the Nobel Prize of computing,” with Geoffrey Hinton and Yann LeCun.

Bengio is a full professor at Université de Montréal, and the founder and scientific director of Mila – Quebec Artificial Intelligence Institute. He is also a senior fellow at CIFAR and co-directs its Learning in Machines & Brains program, serves as scientific director of IVADO, and holds a Canada CIFAR AI Chair.

In 2019, Bengio was awarded the prestigious Killam Prize and in 2022, he was the most cited computer scientist in the world by h-index. He is a Fellow of the Royal Society of London, Fellow of the Royal Society of Canada, Knight of the Legion of Honor of France and Officer of the Order of Canada. In 2023, he was appointed to the UN’s Scientific Advisory Board for Independent Advice on Breakthroughs in Science and Technology.

Concerned about the social impact of AI, Bengio helped draft the Montréal Declaration for the Responsible Development of Artificial Intelligence and continues to raise awareness about the importance of mitigating the potentially catastrophic risks associated with future AI systems.

Current Students

Research Intern - McGill University
Research Intern - Université de Montréal
PhD - Université de Montréal
Collaborating Alumni
Research Intern - Université du Québec à Rimouski
Professional Master's - Université de Montréal
Independent visiting researcher
Co-supervisor :
Independent visiting researcher - UQAR
PhD - Université de Montréal
Research Intern - UQAR
PhD - Université de Montréal
Independent visiting researcher - MIT
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Collaborating researcher - Université Paris-Saclay
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Massachusetts Institute of Technology
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Barcelona University
Research Intern - Université de Montréal
Professional Master's - Université de Montréal
Collaborating researcher - Université de Montréal
Collaborating researcher
Postdoctorate - Université de Montréal
Co-supervisor :
Independent visiting researcher - Technical University Munich (TUM)
PhD - Université de Montréal
Research Intern - Université de Montréal
Master's Research - Université de Montréal
Co-supervisor :
Research Intern - Université de Montréal
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Postdoctorate - Université de Montréal
PhD - Université de Montréal
Collaborating Alumni
Research Intern - Université de Montréal
Collaborating Alumni
PhD - Université de Montréal
Principal supervisor :
Research Intern - McGill University
Research Intern - Imperial College London
PhD - Université de Montréal
Research Intern - Université de Montréal
Collaborating Alumni - Université de Montréal
DESS - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Postdoctorate - Université de Montréal
Collaborating Alumni
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Independent visiting researcher - Université de Montréal
Independent visiting researcher - Hong Kong University of Science and Technology (HKUST)
Collaborating researcher - Ying Wu Coll of Computing
PhD - University of Waterloo
Principal supervisor :
PhD - Max-Planck-Institute for Intelligent Systems
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - Université de Montréal
Independent visiting researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher
Principal supervisor :
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Master's Research - Université de Montréal
Research Intern - Université de Montréal
Research Intern - Université de Montréal
Master's Research - Université de Montréal
Collaborating Alumni
Independent visiting researcher - Technical University of Munich
PhD - École Polytechnique Montréal Fédérale de Lausanne
Postdoctorate - Polytechnique Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher
Principal supervisor :
Postdoctorate - Université de Montréal
Collaborating researcher - Valence
Principal supervisor :
Postdoctorate - Université de Montréal
Co-supervisor :
Collaborating researcher - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Principal supervisor :
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
Research Intern - Université de Montréal
PhD - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :

Publications

SatBird: Bird Species Distribution Modeling with Remote Sensing and Citizen Science Data
Mélisande Teng
Amna Elmustafa
Benjamin Akera
Hager Radi
Biodiversity is declining at an unprecedented rate, impacting ecosystem services necessary to ensure food, water, and human health and well-… (see more)being. Understanding the distribution of species and their habitats is crucial for conservation policy planning. However, traditional methods in ecology for species distribution models (SDMs) generally focus either on narrow sets of species or narrow geographical areas and there remain significant knowledge gaps about the distribution of species. A major reason for this is the limited availability of data traditionally used, due to the prohibitive amount of effort and expertise required for traditional field monitoring. The wide availability of remote sensing data and the growing adoption of citizen science tools to collect species observations data at low cost offer an opportunity for improving biodiversity monitoring and enabling the modelling of complex ecosystems. We introduce a novel task for mapping bird species to their habitats by predicting species encounter rates from satellite images, and present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird, considering summer (breeding) and winter seasons. We also provide a dataset in Kenya representing low-data regimes. We additionally provide environmental data and species range maps for each location. We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks. SatBird opens up possibilities for scalably modelling properties of ecosystems worldwide.
Generative AI models should include detection mechanisms as a condition for public release
Alistair Knott
Dino Pedreschi
Raja Chatila
Tapabrata Chakraborti
Susan Leavy
Ricardo Baeza-Yates
D. Eyers
Andrew Trotman
Paul D. Teal
Przemyslaw Biecek
Stuart Russell
OC-NMN: Object-centric Compositional Neural Module Network for Generative Visual Analogical Reasoning
Rim Assouel
Pau Rodriguez
Perouz Taslakian
David Vazquez
Attention Schema in Neural Agents
Dianbo Liu
Samuele Bolotta
Mike He Zhu
Zahra Sheikhbahaee
Attention has become a common ingredient in deep learning architectures. It adds a dynamical selection of information on top of the static s… (see more)election of information supported by weights. In the same way, we can imagine a higher-order informational filter built on top of attention: an Attention Schema (AS), namely, a descriptive and predictive model of attention. In cognitive neuroscience, Attention Schema Theory (AST) supports this idea of distinguishing attention from AS. A strong prediction of this theory is that an agent can use its own AS to also infer the states of other agents' attention and consequently enhance coordination with other agents. As such, multi-agent reinforcement learning would be an ideal setting to experimentally test the validity of AST. We explore different ways in which attention and AS interact with each other. Our preliminary results indicate that agents that implement the AS as a recurrent internal control achieve the best performance. In general, these exploratory experiments suggest that equipping artificial agents with a model of attention can enhance their social intelligence.
Baking Symmetry into GFlowNets
George Ma
Emmanuel Bengio
Dinghuai Zhang
GFlowNets have exhibited promising performance in generating diverse candidates with high rewards. These networks generate objects increment… (see more)ally and aim to learn a policy that assigns probability of sampling objects in proportion to rewards. However, the current training pipelines of GFlowNets do not consider the presence of isomorphic actions, which are actions resulting in symmetric or isomorphic states. This lack of symmetry increases the amount of samples required for training GFlowNets and can result in inefficient and potentially incorrect flow functions. As a consequence, the reward and diversity of the generated objects decrease. In this study, our objective is to integrate symmetries into GFlowNets by identifying equivalent actions during the generation process. Experimental results using synthetic data demonstrate the promising performance of our proposed approaches.
Baking Symmetry into GFlowNets
George Ma
Emmanuel Bengio
Dinghuai Zhang
GFlowNets have exhibited promising performance in generating diverse candidates with high rewards. These networks generate objects increment… (see more)ally and aim to learn a policy that assigns probability of sampling objects in proportion to rewards. However, the current training pipelines of GFlowNets do not consider the presence of isomorphic actions, which are actions resulting in symmetric or isomorphic states. This lack of symmetry increases the amount of samples required for training GFlowNets and can result in inefficient and potentially incorrect flow functions. As a consequence, the reward and diversity of the generated objects decrease. In this study, our objective is to integrate symmetries into GFlowNets by identifying equivalent actions during the generation process. Experimental results using synthetic data demonstrate the promising performance of our proposed approaches.
Causal Discovery in Gene Regulatory Networks with GFlowNet: Towards Scalability in Large Systems
Trang Nguyen
Alexander Tong
Kanika Madan
Dianbo Liu
Understanding causal relationships within Gene Regulatory Networks (GRNs) is essential for unraveling the gene interactions in cellular proc… (see more)esses. However, causal discovery in GRNs is a challenging problem for multiple reasons including the existence of cyclic feedback loops and uncertainty that yields diverse possible causal structures. Previous works in this area either ignore cyclic dynamics (assume acyclic structure) or struggle with scalability. We introduce Swift-DynGFN as a novel framework that enhances causal structure learning in GRNs while addressing scalability concerns. Specifically, Swift-DynGFN exploits gene-wise independence to boost parallelization and to lower computational cost. Experiments on real single-cell RNA velocity and synthetic GRN datasets showcase the advancement in learning causal structure in GRNs and scalability in larger systems.
Crystal-GFN: sampling materials with desirable properties and constraints
Mistal
Alex Hernandez-Garcia
Alexandra Volokhova
Alexandre AGM Duval
Divya Sharma
pierre luc carrier
Michał Koziarski
Victor Schmidt
Discrete, compositional, and symbolic representations through attractor dynamics
Andrew Nam
Eric Elmoznino
Nikolay Malkin
Chen Sun
Compositionality is an important feature of discrete symbolic systems, such as language and programs, as it enables them to have infinite ca… (see more)pacity despite a finite symbol set. It serves as a useful abstraction for reasoning in both cognitive science and in AI, yet the interface between continuous and symbolic processing is often imposed by fiat at the algorithmic level, such as by means of quantization or a softmax sampling step. In this work, we explore how discretization could be implemented in a more neurally plausible manner through the modeling of attractor dynamics that partition the continuous representation space into basins that correspond to sequences of symbols. Building on established work in attractor networks and introducing novel training methods, we show that imposing structure in the symbolic space can produce compositionality in the attractor-supported representation space of rich sensory inputs. Lastly, we argue that our model exhibits the process of an information bottleneck that is thought to play a role in conscious experience, decomposing the rich information of a sensory input into stable components encoding symbolic information.
Learning to Scale Logits for Temperature-Conditional GFlowNets
Minsu Kim
Joohwan Ko
Dinghuai Zhang
Ling Pan
Taeyoung Yun
Woo Chang Kim
Jinkyoo Park
GFlowNets are probabilistic models that learn a stochastic policy that sequentially generates compositional structures, such as molecular gr… (see more)aphs. They are trained with the objective of sampling such objects with probability proportional to the object's reward. Among GFlowNets, the temperature-conditional GFlowNets represent a family of policies indexed by temperature, and each is associated with the correspondingly tempered reward function. The major benefit of temperature-conditional GFlowNets is the controllability of GFlowNets' exploration and exploitation through adjusting temperature. We propose a \textit{Learning to Scale Logits for temperature-conditional GFlowNets} (LSL-GFN), a novel architectural design that greatly accelerates the training of temperature-conditional GFlowNets. It is based on the idea that previously proposed temperature-conditioning approaches introduced numerical challenges in the training of the deep network because different temperatures may give rise to very different gradient profiles and ideal scales of the policy's logits. We find that the challenge is greatly reduced if a learned function of the temperature is used to scale the policy's logits directly. We empirically show that our strategy dramatically improves the performances of GFlowNets, outperforming other baselines, including reinforcement learning and sampling methods, in terms of discovering diverse modes in multiple biochemical tasks.
Multi-Fidelity Active Learning with GFlowNets
Alex Hernandez-Garcia
Nikita Saxena
Moksh J. Jain
Cheng-Hao Liu
In the last decades, the capacity to generate large amounts of data in science and engineering applications has been growing steadily. Meanw… (see more)hile, the progress in machine learning has turned it into a suitable tool to process and utilise the available data. Nonetheless, many relevant scientific and engineering problems present challenges where current machine learning methods cannot yet efficiently leverage the available data and resources. For example, in scientific discovery, we are often faced with the problem of exploring very large, high-dimensional spaces, where querying a high fidelity, black-box objective function is very expensive. Progress in machine learning methods that can efficiently tackle such problems would help accelerate currently crucial areas such as drug and materials discovery. In this paper, we propose the use of GFlowNets for multi-fidelity active learning, where multiple approximations of the black-box function are available at lower fidelity and cost. GFlowNets are recently proposed methods for amortised probabilistic inference that have proven efficient for exploring large, high-dimensional spaces and can hence be practical in the multi-fidelity setting too. Here, we describe our algorithm for multi-fidelity active learning with GFlowNets and evaluate its performance in both well-studied synthetic tasks and practically relevant applications of molecular discovery. Our results show that multi-fidelity active learning with GFlowNets can efficiently leverage the availability of multiple oracles with different costs and fidelities to accelerate scientific discovery and engineering design.
On the importance of catalyst-adsorbate 3D interactions for relaxed energy predictions
Alvaro Carbonero
Alexandre AGM Duval
Victor Schmidt
Santiago Miret
Alex Hernandez-Garcia
The use of machine learning for material property prediction and discovery has traditionally centered on graph neural networks that incorpor… (see more)ate the geometric configuration of all atoms. However, in practice not all this information may be readily available, e.g.~when evaluating the potentially unknown binding of adsorbates to catalyst. In this paper, we investigate whether it is possible to predict a system's relaxed energy in the OC20 dataset while ignoring the relative position of the adsorbate with respect to the electro-catalyst. We consider SchNet, DimeNet++ and FAENet as base architectures and measure the impact of four modifications on model performance: removing edges in the input graph, pooling independent representations, not sharing the backbone weights and using an attention mechanism to propagate non-geometric relative information. We find that while removing binding site information impairs accuracy as expected, modified models are able to predict relaxed energies with remarkably decent MAE. Our work suggests future research directions in accelerated materials discovery where information on reactant configurations can be reduced or altogether omitted.