Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
In offline multi-objective optimization (MOO), we leverage an offline dataset of designs and their associated labels to simultaneously minim… (see more)ize multiple objectives. This setting more closely mirrors complex real-world problems compared to single-objective optimization. Recent works mainly employ evolutionary algorithms and Bayesian optimization, with limited attention given to the generative modeling capabilities inherent in such data. In this study, we explore generative modeling in offline MOO through flow matching, noted for its effectiveness and efficiency. We introduce ParetoFlow, specifically designed to guide flow sampling to approximate the Pareto front. Traditional predictor (classifier) guidance is inadequate for this purpose because it models only a single objective. In response, we propose a multi-objective predictor guidance module that assigns each sample a weight vector, representing a weighted distribution across multiple objective predictions. A local filtering scheme is introduced to address non-convex Pareto fronts. These weights uniformly cover the entire objective space, effectively directing sample generation towards the Pareto front. Since distributions with similar weights tend to generate similar samples, we introduce a neighboring evolution module to foster knowledge sharing among neighboring distributions. This module generates offspring from these distributions, and selects the most promising one for the next iteration. Our method achieves state-of-the-art performance across various tasks.
In offline multi-objective optimization (MOO), we leverage an offline dataset of designs and their associated labels to simultaneously minim… (see more)ize multiple objectives. This setting more closely mirrors complex real-world problems compared to single-objective optimization. Recent works mainly employ evolutionary algorithms and Bayesian optimization, with limited attention given to the generative modeling capabilities inherent in such data. In this study, we explore generative modeling in offline MOO through flow matching, noted for its effectiveness and efficiency. We introduce ParetoFlow, specifically designed to guide flow sampling to approximate the Pareto front. Traditional predictor (classifier) guidance is inadequate for this purpose because it models only a single objective. In response, we propose a multi-objective predictor guidance module that assigns each sample a weight vector, representing a weighted distribution across multiple objective predictions. A local filtering scheme is introduced to address non-convex Pareto fronts. These weights uniformly cover the entire objective space, effectively directing sample generation towards the Pareto front. Since distributions with similar weights tend to generate similar samples, we introduce a neighboring evolution module to foster knowledge sharing among neighboring distributions. This module generates offspring from these distributions, and selects the most promising one for the next iteration. Our method achieves state-of-the-art performance across various tasks.
In offline multi-objective optimization (MOO), we leverage an offline dataset of designs and their associated labels to simultaneously minim… (see more)ize multiple objectives. This setting more closely mirrors complex real-world problems compared to single-objective optimization. Recent works mainly employ evolutionary algorithms and Bayesian optimization, with limited attention given to the generative modeling capabilities inherent in such data. In this study, we explore generative modeling in offline MOO through flow matching, noted for its effectiveness and efficiency. We introduce ParetoFlow, specifically designed to guide flow sampling to approximate the Pareto front. Traditional predictor (classifier) guidance is inadequate for this purpose because it models only a single objective. In response, we propose a multi-objective predictor guidance module that assigns each sample a weight vector, representing a weighted distribution across multiple objective predictions. A local filtering scheme is introduced to address non-convex Pareto fronts. These weights uniformly cover the entire objective space, effectively directing sample generation towards the Pareto front. Since distributions with similar weights tend to generate similar samples, we introduce a neighboring evolution module to foster knowledge sharing among neighboring distributions. This module generates offspring from these distributions, and selects the most promising one for the next iteration. Our method achieves state-of-the-art performance across various tasks.
Offline model-based optimization aims to find a design that maximizes a property of interest using only an offline dataset, with application… (see more)s in robot, protein, and molecule design, among others. A prevalent approach is gradient ascent, where a proxy model is trained on the offline dataset and then used to optimize the design. This method suffers from an out-of-distribution issue, where the proxy is not accurate for unseen designs. To mitigate this issue, we explore using a pseudo-labeler to generate valuable data for fine-tuning the proxy.
Specifically, we propose
Fake news with detrimental societal effects has 001 attracted extensive attention and research. De-002 spite early success, the state-of-the… (see more)-art meth-003 ods fall short of considering the propagation 004 of news. News propagates at different times 005 through different mediums, including users, 006 comments, and sources, which form the news 007 propagation network. Moreover, the serious 008 problem of data hiding arises, which means 009 that fake news publishers disguise fake news 010 as real to confuse users by deleting comments 011 that refute the rumor or deleting the news itself 012 when it has been spread widely. Existing meth-013 ods do not consider the propagation of news 014 and fail to identify what matters in the process, 015 which leads to fake news hiding in the prop-016 agation network and escaping from detection. 017 Inspired by the propagation of news, we pro-018 pose a novel fake news detection framework 019 named TaHiD, which models the propagation 020 as a heterogeneous dynamic graph and contains 021 the propagation attention module to measure 022 the influence of different propagation. Exper-023 iments demonstrate that TaHiD extracts use-024 ful information from the news propagation net-025 work and outperforms state-of-the-art methods 026 on several benchmark datasets for fake news 027 detection. Additional studies also show that 028 TaHiD is capable of identifying fake news in 029 the case of data hiding. 030