Portrait of Yoshua Bengio

Yoshua Bengio

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research Department
Founder and Scientific Advisor, Leadership Team
Research Topics
Causality
Computational Neuroscience
Deep Learning
Generative Models
Graph Neural Networks
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Natural Language Processing
Probabilistic Models
Reasoning
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Biography

*For media requests, please write to medias@mila.quebec.

For more information please contact Marie-Josée Beauchamp, Administrative Assistant at marie-josee.beauchamp@mila.quebec.

Yoshua Bengio is recognized worldwide as a leading expert in AI. He is most known for his pioneering work in deep learning, which earned him the 2018 A.M. Turing Award, “the Nobel Prize of computing,” with Geoffrey Hinton and Yann LeCun.

Bengio is a full professor at Université de Montréal, and the founder and scientific advisor of Mila – Quebec Artificial Intelligence Institute. He is also a senior fellow at CIFAR and co-directs its Learning in Machines & Brains program, serves as special advisor and founding scientific director of IVADO, and holds a Canada CIFAR AI Chair.

In 2019, Bengio was awarded the prestigious Killam Prize and in 2022, he was the most cited computer scientist in the world by h-index. He is a Fellow of the Royal Society of London, Fellow of the Royal Society of Canada, Knight of the Legion of Honor of France and Officer of the Order of Canada. In 2023, he was appointed to the UN’s Scientific Advisory Board for Independent Advice on Breakthroughs in Science and Technology.

Concerned about the social impact of AI, Bengio helped draft the Montréal Declaration for the Responsible Development of Artificial Intelligence and continues to raise awareness about the importance of mitigating the potentially catastrophic risks associated with future AI systems.

Current Students

Collaborating Alumni - McGill University
Collaborating Alumni - Université de Montréal
Collaborating researcher - Cambridge University
Principal supervisor :
PhD - Université de Montréal
Independent visiting researcher - KAIST
Independent visiting researcher
Co-supervisor :
PhD - Université de Montréal
Collaborating researcher - N/A
Principal supervisor :
PhD - Université de Montréal
Collaborating researcher - KAIST
PhD - Université de Montréal
PhD - Université de Montréal
Research Intern - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Research Intern - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Collaborating Alumni - Université de Montréal
Principal supervisor :
Collaborating Alumni
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Principal supervisor :
Independent visiting researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Ying Wu Coll of Computing
PhD - University of Waterloo
Principal supervisor :
Collaborating Alumni - Max-Planck-Institute for Intelligent Systems
Research Intern - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - Université de Montréal
Postdoctorate - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Master's Research - Université de Montréal
Collaborating Alumni - Université de Montréal
Master's Research - Université de Montréal
Postdoctorate
Independent visiting researcher - Technical University of Munich
PhD - Université de Montréal
Co-supervisor :
Postdoctorate - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Collaborating researcher
Collaborating researcher - KAIST
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - McGill University
Principal supervisor :

Publications

Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Lazar Atanackovic
Xi Zhang
Brandon Amos
Leo J Lee
Alexander Tong
Numerous biological and physical processes can be modeled as systems of interacting entities evolving continuously over time, e.g. the dynam… (see more)ics of communicating cells or physical particles. Learning the dynamics of such systems is essential for predicting the temporal evolution of populations across novel samples and unseen environments. Flow-based models allow for learning these dynamics at the population level - they model the evolution of the entire distribution of samples. However, current flow-based models are limited to a single initial population and a set of predefined conditions which describe different dynamics. We argue that multiple processes in natural sciences have to be represented as vector fields on the Wasserstein manifold of probability densities. That is, the change of the population at any moment in time depends on the population itself due to the interactions between samples. In particular, this is crucial for personalized medicine where the development of diseases and their respective treatment response depends on the microenvironment of cells specific to each patient. We propose Meta Flow Matching (MFM), a practical approach to integrating along these vector fields on the Wasserstein manifold by amortizing the flow model over the initial populations. Namely, we embed the population of samples using a Graph Neural Network (GNN) and use these embeddings to train a Flow Matching model. This gives MFM the ability to generalize over the initial distributions unlike previously proposed methods. We demonstrate the ability of MFM to improve prediction of individual treatment responses on a large scale multi-patient single-cell drug screen dataset.
Structure Language Models for Protein Conformation Generation
Jiarui Lu
Xiaoyin Chen
Stephen Zhewen Lu
Chence Shi
Hongyu Guo
On the Transfer of Object-Centric Representation Learning.
Aniket Rajiv Didolkar
Andrii Zadaianchuk
Anirudh Goyal
Michael Curtis Mozer
Georg Martius
Maximilian Seitzer
On the Transfer of Object-Centric Representation Learning
Aniket Rajiv Didolkar
Andrii Zadaianchuk
Anirudh Goyal
Michael Curtis Mozer
Georg Martius
Maximilian Seitzer
The goal of object-centric representation learning is to decompose visual scenes into a structured representation that isolates the entities… (see more) into individual vectors. Recent successes have shown that object-centric representation learning can be scaled to real-world scenes by utilizing features from pre-trained foundation models like DINO. However, so far, these object-centric methods have mostly been applied in-distribution, with models trained and evaluated on the same dataset. This is in contrast to the underlying foundation models, which have been shown to be applicable to a wide range of data and tasks. Thus, in this work, we answer the question of whether current real-world capable object-centric methods exhibit similar levels of transferability by introducing a benchmark comprising seven different synthetic and real-world datasets. We analyze the factors influencing performance under transfer and find that training on diverse real-world images improves generalization to unseen scenarios. Furthermore, inspired by the success of task-specific fine-tuning in foundation models, we introduce a novel fine-tuning strategy to adapt pre-trained vision encoders for the task of object discovery. We find that the proposed approach results in state-of-the-art performance for unsupervised object discovery, exhibiting strong zero-shot transfer to unseen datasets.
Towards Improving Exploration through Sibling Augmented GFlowNets
Kanika Madan
Alex Lamb
Exploration is a key factor for the success of an active learning agent, especially when dealing with sparse extrinsic terminal rewards and … (see more)long trajectories. We introduce Sibling Augmented Generative Flow Networks (SA-GFN), a novel framework designed to enhance exploration and training efficiency of Generative Flow Networks (GFlowNets). SA-GFN uses a decoupled dual network architecture, comprising of a main Behavior Network and an exploratory Sibling Network, to enable a diverse exploration of the underlying distribution using intrinsic rewards. Inspired by the ideas on exploration from reinforcement learning, SA-GFN provides a general-purpose exploration and learning paradigm that integrates with multiple GFlowNet training objectives and is especially helpful for exploration over a wide range of sparse or low reward distributions and task structures. An extensive set of experiments across a diverse range of tasks, reward structures and trajectory lengths, along with a thorough set of ablations, demonstrate the superior performance of SA-GFN in terms of exploration efficacy and convergence speed as compared to the existing methods. In addition, SA-GFN's versatility and compatibility with different GFlowNet training objectives and intrinsic reward methods underscores its broad applicability in various problem domains.
VCR: Pixel-Level Complex Reasoning by Restoring Occluded Text
Tianyu Zhang
Suyuchen Wang
Lu Liu
Ge Zhang
Perouz Taslakian
Sai Rajeswar
Jie Fu
We introduce Visual Caption Restoration (VCR), a novel vision-language task that challenges models to accurately restore partially obscured … (see more)texts using pixel-level hints within images through complex reasoning. This task stems from the observation that text embedded in images intrinsically differs from common visual elements and text due to the need to align the modalities of vision, text, and text embedded in images. While many works incorporate text into images for visual question answering, they mostly rely on OCR or masked language modeling, reducing the task to text-based processing. However, text-based processing becomes ineffective in VCR as accurate text restoration depends on the combined information from provided images, context, and subtle cues from the tiny, exposed areas of masked texts. We develop a pipeline to generate synthetic images for the VCR task using image-caption pairs, with adjustable caption visibility to control the task difficulty. With this pipeline, we construct VCR-WIKI for VCR using Wikipedia images with captions, including 2.11M English and 346K Chinese training entities, plus 5K validation and 5K test entities in both languages, each in easy and hard configurations. We also make a hidden test set, VCR-HIDDEN, to avoid potential overfitting on VCR-WIKI. Our results reveal that current vision-language models significantly lag behind human performance in the VCR task, and merely fine-tuning the models on our dataset does not lead to notable improvements. We release VCR-WIKI and the data construction code to facilitate future research.
VCR: A Task for Pixel-Level Complex Reasoning in Vision Language Models via Restoring Occluded Text
Tianyu Zhang
Suyuchen Wang
Lu Liu
Ge Zhang
Perouz Taslakian
Sai Rajeswar
Jie Fu
VCR: A Task for Pixel-Level Complex Reasoning in Vision Language Models via Restoring Occluded Text
Tianyu Zhang
Suyuchen Wang
Lu Li
Ge Zhang
Perouz Taslakian
Sai Rajeswar
Jie Fu
We introduce Visual Caption Restoration (VCR), a novel vision-language task that challenges models to accurately restore partially obscured … (see more)texts using pixel-level hints within images through complex reasoning. This task stems from the observation that text embedded in images intrinsically differs from common visual elements and text due to the need to align the modalities of vision, text, and text embedded in images. While many works incorporate text into images for visual question answering, they mostly rely on OCR or masked language modeling, reducing the task to text-based processing. However, text-based processing becomes ineffective in VCR as accurate text restoration depends on the combined information from provided images, context, and subtle cues from the tiny, exposed areas of masked texts. We develop a pipeline to generate synthetic images for the VCR task using image-caption pairs, with adjustable caption visibility to control the task difficulty. With this pipeline, we construct VCR-WIKI for VCR using Wikipedia images with captions, including 2.11M English and 346K Chinese training entities, plus 5K validation and 5K test entities in both languages, each in easy and hard configurations. We also make a hidden test set, VCR-HIDDEN, to avoid potential overfitting on VCR-WIKI. Our results reveal that current vision-language models significantly lag behind human performance in the VCR task, and merely fine-tuning the models on our dataset does not lead to notable improvements. We release VCR-WIKI and the data construction code to facilitate future research.
Can Safety Fine-Tuning Be More Principled? Lessons Learned from Cybersecurity
David Williams-King
Linh Le
Adam Oberman
As LLMs develop increasingly advanced capabilities, there is an increased need to minimize the harm that could be caused to society by certa… (see more)in model outputs; hence, most LLMs have safety guardrails added, for example via fine-tuning. In this paper, we argue the position that current safety fine-tuning is very similar to a traditional cat-and-mouse game (or arms race) between attackers and defenders in cybersecurity. Model jailbreaks and attacks are patched with bandaids to target the specific attack mechanism, but many similar attack vectors might remain. When defenders are not proactively coming up with principled mechanisms, it becomes very easy for attackers to sidestep any new defenses. We show how current defenses are insufficient to prevent new adversarial jailbreak attacks, reward hacking, and loss of control problems. In order to learn from past mistakes in cybersecurity, we draw analogies with historical examples and develop lessons learned that can be applied to LLM safety. These arguments support the need for new and more principled approaches to designing safe models, which are architected for security from the beginning. We describe several such approaches from the AI literature.
EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision
Diego Velazquez
Pau Rodriguez
Sergio Alonso
Josep M. Gonfaus
Jordi Gonzàlez 0001
Gerardo Richarte
Javier Marin
Alexandre Lacoste
This paper presents EarthView, a comprehensive dataset specifically designed for self-supervision on remote sensing data, intended to enhanc… (see more)e deep learning applications on Earth monitoring tasks. The dataset spans 15 tera pixels of global remote-sensing data, combining imagery from a diverse range of sources, including NEON, Sentinel, and a novel release of 1m spatial resolution data from Satellogic. Our dataset provides a wide spectrum of image data with varying resolutions, harnessed from different sensors and organized coherently into an accessible HuggingFace dataset in parquet format. This data spans five years, from 2017 to 2022. Accompanying the dataset, we introduce EarthMAE, a tailored Masked Autoencoder, developed to tackle the distinct challenges of remote sensing data. Trained in a self-supervised fashion, EarthMAE effectively processes different data modalities such as hyperspectral, multispectral, topographical data, segmentation maps, and temporal structure. This model helps us show that pre-training on Satellogic data improves performance on downstream tasks. While there is still a gap to fill in MAE for heterogeneous data, we regard this innovative combination of an expansive, diverse dataset and a versatile model adapted for self-supervised learning as a stride forward in deep learning for Earth monitoring.
ICLR 2025 Workshop on Tackling Climate Change with Machine Learning: Data-Centric Approaches in ML for Climate Action
Konstantin Klemmer
Melissa Chapman
Lily Xu
Poon Kin Ho
Mélisande Teng
Patrick Emami
Climate change is one of the greatest problems society has ever faced, with increasingly severe consequences for humanity as natural disaste… (see more)rs multiply, sea levels rise, and ecosystems falter. While no silver bullet, machine learning can be an invaluable tool in fighting climate change via a wide array of applications and techniques, from designing smart electric grids to tracking greenhouse gas emissions through satellite imagery. These applications require algorithmic innovations in machine learning and close collaboration with diverse fields and practitioners. This workshop is intended as a forum for those in the global machine learning community who wish to help tackle climate change, and is further aimed to help foster cross-pollination between researchers in machine learning and experts in complementary climate-relevant fields. Building on our past workshops on this topic, this workshop particularly aims to explore data-centric ML approaches for climate action. Data-centric ML is not only a timely topic within the ICLR community, as analyzing and engineering (pre)training datasets becomes increasingly important, but holds specific challenges and opportunities in climate-related areas. We also want to take the opportunity of ICLR being hosted in Singapore to engage with local communities and shine a light on work that deploys, analyzes or critiques ML methods and their use for climate change adaptation and mitigation on the Asian continent.
Integrating Generative and Experimental Platforms for Biomolecular Design
Cheng-Hao Liu
Jarrid Rector-Brooks
Soojung Yang
Sidney L Lisanza
Francesca-Zhoufan Li
Hannes Stärk
Jacob Gershon
Lauren Hong
Pranam Chatterjee
Tommi Jaakkola
Regina Barzilay
David Baker
Frances H. Arnold
Biomolecular design, through artificial engineering of proteins, ligands, and nucleic acids, holds immense promise in addressing pressing me… (see more)dical, industrial, and environmental challenges. While generative machine learning has shown significant potential in this area, a palpable disconnect exists with experimental biology: many ML research efforts prioritize static benchmark performance, potentially sidelining impactful biological applications. This workshop seeks to bridge this gap by bringing computationalists and experimentalists together, catalyzing a deeper interdisciplinary discourse. Together, we will explore the strengths and challenges of generative ML in biology, experimental integration of generative ML, and biological problems ready for ML. To attract high-quality and diverse research, we partnered with Nature Biotechnology for a special collection, and we created dedicated tracks for in-silico ML research and hybrid ML-experimental biology research. Our lineup features emerging leaders as speakers and renowned scientists as panelists, encapsulating a spectrum from high-throughput experimentation and computational biology to generative ML. With a diverse organizing team and backed by industry sponsors, we dedicate the workshop to pushing the boundaries of ML's role in biology.