Portrait of Yoshua Bengio

Yoshua Bengio

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research Department
Scientific Director, Leadership Team
Observer, Board of Directors, Mila

Biography

*For media requests, please write to medias@mila.quebec.

For more information please contact Julie Mongeau, executive assistant at julie.mongeau@mila.quebec.

Yoshua Bengio is recognized worldwide as a leading expert in AI. He is most known for his pioneering work in deep learning, which earned him the 2018 A.M. Turing Award, “the Nobel Prize of computing,” with Geoffrey Hinton and Yann LeCun.

Bengio is a full professor at Université de Montréal, and the founder and scientific director of Mila – Quebec Artificial Intelligence Institute. He is also a senior fellow at CIFAR and co-directs its Learning in Machines & Brains program, serves as scientific director of IVADO, and holds a Canada CIFAR AI Chair.

In 2019, Bengio was awarded the prestigious Killam Prize and in 2022, he was the most cited computer scientist in the world by h-index. He is a Fellow of the Royal Society of London, Fellow of the Royal Society of Canada, Knight of the Legion of Honor of France and Officer of the Order of Canada. In 2023, he was appointed to the UN’s Scientific Advisory Board for Independent Advice on Breakthroughs in Science and Technology.

Concerned about the social impact of AI, Bengio helped draft the Montréal Declaration for the Responsible Development of Artificial Intelligence and continues to raise awareness about the importance of mitigating the potentially catastrophic risks associated with future AI systems.

Current Students

Research Intern - Université de Montréal
PhD - Université de Montréal
Research Intern - Université du Québec à Rimouski
Professional Master's - Université de Montréal
Independent visiting researcher
Co-supervisor :
Independent visiting researcher - UQAR
PhD - Université de Montréal
Independent visiting researcher - MIT
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Professional Master's - Université de Montréal
Professional Master's - Université de Montréal
Collaborating Alumni - Université de Montréal
Collaborating researcher - Université Paris-Saclay
Principal supervisor :
PhD - Université de Montréal
PhD - Massachusetts Institute of Technology
PhD - Université de Montréal
PhD - Université de Montréal
Professional Master's - Université de Montréal
Research Intern - Université de Montréal
Professional Master's - Université de Montréal
Professional Master's - Université de Montréal
Collaborating researcher - Université de Montréal
Collaborating researcher
Postdoctorate - Université de Montréal
Co-supervisor :
Independent visiting researcher - Technical University Munich (TUM)
PhD - Université de Montréal
Research Intern - Université de Montréal
Master's Research - Université de Montréal
Co-supervisor :
Research Intern - Université de Montréal
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Postdoctorate - Université de Montréal
PhD - Université de Montréal
Collaborating Alumni
Research Intern - Université de Montréal
Professional Master's - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Research Intern - McGill University
Research Intern - Imperial College London
PhD - Université de Montréal
Research Intern - Université de Montréal
Collaborating Alumni - Université de Montréal
DESS - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Postdoctorate - Université de Montréal
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Professional Master's - Université de Montréal
Independent visiting researcher - Université de Montréal
Independent visiting researcher - Hong Kong University of Science and Technology (HKUST)
Collaborating researcher - Ying Wu Coll of Computing
Professional Master's - Université de Montréal
PhD - Max-Planck-Institute for Intelligent Systems
Professional Master's - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - Université de Montréal
Independent visiting researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher
Principal supervisor :
Postdoctorate - Université de Montréal
Master's Research - Université de Montréal
Research Intern - Université de Montréal
Master's Research - Université de Montréal
Professional Master's - Université de Montréal
Independent visiting researcher - Technical University of Munich
PhD - École Polytechnique Montréal Fédérale de Lausanne
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher
Principal supervisor :
Postdoctorate - Université de Montréal
Collaborating researcher - Valence
Principal supervisor :
Postdoctorate - Université de Montréal
Co-supervisor :
Collaborating researcher - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Principal supervisor :
PhD - Université de Montréal
Professional Master's - Université de Montréal
Collaborating Alumni - Université de Montréal
Research Intern - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :

Publications

Stateful active facilitator: Coordination and Environmental Heterogeneity in Cooperative Multi-Agent Reinforcement Learning
Dianbo Liu
Vedant Shah
Oussama Boussif
Cristian Meo
Anirudh Goyal
Tianmin Shu
Michael Curtis Mozer
Nicolas Heess
Leveraging the Third Dimension in Contrastive Learning
Sumukh K Aithal
Anirudh Goyal
Alex Lamb
Michael Curtis Mozer
Self-Supervised Learning (SSL) methods operate on unlabeled data to learn robust representations useful for downstream tasks. Most SSL metho… (see more)ds rely on augmentations obtained by transforming the 2D image pixel map. These augmentations ignore the fact that biological vision takes place in an immersive three-dimensional, temporally contiguous environment, and that low-level biological vision relies heavily on depth cues. Using a signal provided by a pretrained state-of-the-art monocular RGB-to-depth model (the \emph{Depth Prediction Transformer}, Ranftl et al., 2021), we explore two distinct approaches to incorporating depth signals into the SSL framework. First, we evaluate contrastive learning using an RGB+depth input representation. Second, we use the depth signal to generate novel views from slightly different camera positions, thereby producing a 3D augmentation for contrastive learning. We evaluate these two approaches on three different SSL methods -- BYOL, SimSiam, and SwAV -- using ImageNette (10 class subset of ImageNet), ImageNet-100 and ImageNet-1k datasets. We find that both approaches to incorporating depth signals improve the robustness and generalization of the baseline SSL methods, though the first approach (with depth-channel concatenation) is superior. For instance, BYOL with the additional depth channel leads to an increase in downstream classification accuracy from 85.3\% to 88.0\% on ImageNette and 84.1\% to 87.0\% on ImageNet-C.
Regeneration Learning: A Learning Paradigm for Data Generation
Xu Tan
Tao Qin
Jiang Bian
Tie-Yan Liu
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Thomas Laurent
Anh Tuan Luu
Xavier Bresson
Conditional Flow Matching: Simulation-Free Dynamic Optimal Transport
Alexander Tong
Nikolay Malkin
Guillaume Huguet
Yanlei Zhang
Jarrid Rector-Brooks
Kilian FATRAS
Constant Memory Attentive Neural Processes
Leo Feng
Frederick Tung
Hossein Hajimirsadeghi
Mohamed Osama Ahmed
DynGFN: Bayesian Dynamic Causal Discovery using Generative Flow Networks
Lazar Atanackovic
Alexander Tong
Jason Hartford
Leo Jingyu Lee
Bo Wang
Learning the causal structure of observable variables is a central focus for scientific discovery. Bayesian causal discovery methods tackle… (see more) this problem by learning a posterior over the set of admissible graphs given our priors and observations. Existing methods primarily consider observations from static systems and assume the underlying causal structure takes the form of a directed acyclic graph (DAG). In settings with dynamic feedback mechanisms that regulate the trajectories of individual variables, this acyclicity assumption fails unless we account for time. We focus on learning Bayesian posteriors over cyclic graphs and treat causal discovery as a problem of sparse identification of a dynamical sys-tem. This imposes a natural temporal causal order between variables and captures cyclic feedback loops through time. Under this lens, we propose a new framework for Bayesian causal discovery for dynamical systems and present a novel generative flow network architecture (DynGFN) tailored for this task. Our results indicate that DynGFN learns posteriors that better encapsulate the distributions over admissible cyclic causal structures compared to counterpart state-of-the-art approaches.
GFlowNets for AI-Driven Scientific Discovery
Moksh J. Jain
Tristan Deleu
Jason Hartford
Cheng-Hao Liu
Alex Hernandez-Garcia
Tackling the most pressing problems for humanity, such as the climate crisis and the threat of global pandemics, requires accelerating the p… (see more)ace of scientific discovery. While science has traditionally relied...
GFlowOut: Dropout with Generative Flow Networks
Dianbo Liu
Moksh J. Jain
Bonaventure F. P. Dossou
Qianli Shen
Salem Lahlou
Anirudh Goyal
Nikolay Malkin
Chris Emezue
Dinghuai Zhang
Nadhir Hassen
Xu Ji
Kenji Kawaguchi
GFlowOut: Dropout with Generative Flow Networks
Dianbo Liu
Moksh J. Jain
Bonaventure F. P. Dossou
Qianli Shen
Salem Lahlou
Anirudh Goyal
Nikolay Malkin
Chris Emezue
Dinghuai Zhang
Nadhir Hassen
Xu Ji
Kenji Kawaguchi
HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution
Eric Nguyen
Michael Poli
Marjan Faizi
Armin W Thomas
Callum Birch-Sykes
Michael Wornow
Aman Patel
Clayton M. Rabideau
Stefano Massaroli
Stefano Ermon
Stephen Baccus
Christopher Re
Learning GFlowNets from partial episodes for improved convergence and stability
Kanika Madan
Jarrid Rector-Brooks
Maksym Korablyov
Emmanuel Bengio
Moksh J. Jain
Andrei Cristian Nica
Tom Bosc
Nikolay Malkin
Generative flow networks (GFlowNets) are a family of algorithms for training a sequential sampler of discrete objects under an unnormalized … (see more)target density and have been successfully used for various probabilistic modeling tasks. Existing training objectives for GFlowNets are either local to states or transitions, or propagate a reward signal over an entire sampling trajectory. We argue that these alternatives represent opposite ends of a gradient bias-variance tradeoff and propose a way to exploit this tradeoff to mitigate its harmful effects. Inspired by the TD(