Publications

Reinforcement Learning for Blind Stair Climbing with Legged and Wheeled-Legged Robots
Simon Chamorro
Victor Klemm
Miguel de La Iglesia Valls
Roland Siegwart
Reproducible Spinal Cord Quantitative MRI Analysis with the Spinal Cord Toolbox.
Jan Valošek
Scope Ambiguities in Large Language Models
Gaurav Kamath
Sebastian Schuster
Sowmya Vajjala
SIB-200: A Simple, Inclusive, and Big Evaluation Dataset for Topic Classification in 200+ Languages and Dialects
Hannah Liu
Xiaoyu Shen
Nikita Vassilyev
Jesujoba Oluwadara Alabi
Yanke Mao
Haonan Gao
Annie En-Shiun Lee
Simulation-Free Schrödinger Bridges via Score and Flow Matching
Alexander Tong
Nikolay Malkin
Kilian FATRAS
Lazar Atanackovic
Yanlei Zhang
Guillaume Huguet
We present simulation-free score and flow matching ([SF]…
Simultaneous linear connectivity of neural networks modulo permutation
Ekansh Sharma
Devin Kwok
Tom Denton
Daniel M. Roy
Stochastic Frank-Wolfe: Unified Analysis and Zoo of Special Cases
Ruslan Nazykov
Aleksandr Shestakov
Vladimir Solodkin
Aleksandr Beznosikov
Alexander Gasnikov
The Conditional Gradient (or Frank-Wolfe) method is one of the most well-known methods for solving constrained optimization problems appeari… (voir plus)ng in various machine learning tasks. The simplicity of iteration and applicability to many practical problems helped the method to gain popularity in the community. In recent years, the Frank-Wolfe algorithm received many different extensions, including stochastic modifications with variance reduction and coordinate sampling for training of huge models or distributed variants for big data problems. In this paper, we present a unified convergence analysis of the Stochastic Frank-Wolfe method that covers a large number of particular practical cases that may have completely different nature of stochasticity, intuitions and application areas. Our analysis is based on a key parametric assumption on the variance of the stochastic gradients. But unlike most works on unified analysis of other methods, such as SGD, we do not assume an unbiasedness of the real gradient estimation. We conduct analysis for convex and non-convex problems due to the popularity of both cases in machine learning. With this general theoretical framework, we not only cover rates of many known methods, but also develop numerous new methods. This shows the flexibility of our approach in developing new algorithms based on the Conditional Gradient approach. We also demonstrate the properties of the new methods through numerical experiments.
Stochastic Simulated Quantum Annealing for Fast Solution of Combinatorial Optimization Problems
Naoya Onizawa
Ryoma Sasaki
Duckgyu Shin
Takahiro Hanyu
In this paper, we introduce stochastic simulated quantum annealing (SSQA) for large-scale combinatorial optimization problems. SSQA is desig… (voir plus)ned based on stochastic computing and quantum Monte Carlo, which can simulate quantum annealing (QA) by using multiple replicas of spins (probabilistic bits) in classical computing. The use of stochastic computing leads to an efficient parallel spin-state update algorithm, enabling quick search for a solution around the global minimum energy. Therefore, SSQA realizes quantum-like annealing for large-scale problems and can handle fully connected models in combinatorial optimization, unlike QA. The proposed method is evaluated in MATLAB on graph isomorphism problems, which are typical combinatorial optimization problems. The proposed method achieves a convergence speed an order of magnitude faster than a conventional stochastic simulaated annealing method. Additionally, it can handle a 100-times larger problem size compared to QA and a 25-times larger problem size compared to a traditional SA method, respectively, for similar convergence probabilities.
Strong Consistency and Rate of Convergence of Switched Least Squares System Identification for Autonomous Markov Jump Linear Systems
Borna Sayedana
Mohammad Afshari
Peter E. Caines
In this paper, we investigate the problem of system identification for autonomous Markov jump linear systems (MJS) with complete state obser… (voir plus)vations. We propose switched least squares method for identification of MJS, show that this method is strongly consistent, and derive data-dependent and data-independent rates of convergence. In particular, our data-independent rate of convergence shows that, almost surely, the system identification error is
No such thing as one-size-fits-all in AI ethics frameworks: a comparative case study
Vivian Qiang
Jimin Rhim
Sufficient conditions for offline reactivation in recurrent neural networks
Nanda H Krishna
Colin Bredenberg
Daniel Levenstein
During periods of quiescence, such as sleep, neural activity in many brain circuits resembles that observed during periods of task engagemen… (voir plus)t. However, the precise conditions under which task-optimized networks can autonomously reactivate the same network states responsible for online behavior are poorly understood. In this study, we develop a mathematical framework that outlines sufficient conditions for the emergence of neural reactivation in circuits that encode features of smoothly varying stimuli. We demonstrate mathematically that noisy recurrent networks optimized to track environmental state variables using change-based sensory information naturally develop denoising dynamics, which, in the absence of input, cause the network to revisit state configurations observed during periods of online activity. We validate our findings using numerical experiments on two canonical neuroscience tasks: spatial position estimation based on self-motion cues, and head direction estimation based on angular velocity cues. Overall, our work provides theoretical support for modeling offline reactivation as an emergent consequence of task optimization in noisy neural circuits.
Survey on Explainable AI: Techniques, challenges and open issues
Adel Abusitta
Miles Q. Li