Perspectives sur l’IA pour les responsables des politiques
Co-dirigé par Mila et le CIFAR, ce programme met en relations les responsables des politiques avec un groupe d’expert·e·s en IA pour discuter librement de leurs défis en matière d'IA et de politique.
Joignez-vous à nous le 17 avril pour notre conférence annuelle d'une journée sur la recherche en IA, mettant en vedette les chercheur·euse·s de Mila et des conférencier·ère·s de renom, au profit de Centraide du Grand Montréal.
Développement du groupe d'experts de l'ONU sur l'IA
Mila a récemment réuni des expert·e·s de renom pour discuter de la création d’un groupe indépendant sur l’IA pour l’ONU. Ce document propose des recommandations clés pour assurer son indépendance et sa légitimité.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Hint Marginalization for Improved Reasoning in Large Language Models
Large Language Models (LLMs) have exhibited an impressive capability to perform reasoning tasks, especially if they are encouraged to genera… (voir plus)te a sequence of intermediate steps. Reasoning performance can be improved by suitably combining multiple LLM responses, generated either in parallel in a single query, or via sequential interactions with LLMs throughout the reasoning process. Existing strategies for combination, such as self-consistency and progressive-hint-prompting, make inefficient usage of the LLM responses. We present Hint Marginalization, a novel and principled algorithmic framework to enhance the reasoning capabilities of LLMs. Our approach can be viewed as an iterative sampling strategy for forming a Monte Carlo approximation of an underlying distribution of answers, with the goal of identifying the mode the most likely answer. Empirical evaluation on several benchmark datasets for arithmetic reasoning demonstrates the superiority of the proposed approach.
Large Language Models (LLMs) have exhibited an impressive capability to perform reasoning tasks, especially if they are encouraged to genera… (voir plus)te a sequence of intermediate steps. Reasoning performance can be improved by suitably combining multiple LLM responses, generated either in parallel in a single query, or via sequential interactions with LLMs throughout the reasoning process. Existing strategies for combination, such as self-consistency and progressive-hint-prompting, make inefficient usage of the LLM responses. We present Hint Marginalization, a novel and principled algorithmic framework to enhance the reasoning capabilities of LLMs. Our approach can be viewed as an iterative sampling strategy for forming a Monte Carlo approximation of an underlying distribution of answers, with the goal of identifying the mode the most likely answer. Empirical evaluation on several benchmark datasets for arithmetic reasoning demonstrates the superiority of the proposed approach.
Automatically locating buggy changesets associated with bug reports is crucial in the software development process. Deep Learning (DL)-based… (voir plus) techniques show promising results by leveraging structural information from the code and learning links between changesets and bug reports. However, since source code associated with changesets evolves, the performance of such models tends to degrade over time due to concept drift. Aiming to address this challenge, in this paper, we evaluate the potential of using Continual Learning (CL) techniques in multiple sub-tasks setting for bug localization (each of which operates on either stationary or non-stationary data), comparing it against a bug localization technique that leverages the BERT model, a deep reinforcement learning-based technique that leverages the A2C algorithm, and a DL-based function-level interaction model for semantic bug localization. Additionally, we enhanced the CL techniques by using logistic regression to identify and integrate the most significant bug-inducing factors. Our empirical evaluation across seven widely used software projects shows that CL techniques perform better than DL-based techniques by up to 61% in terms of Mean Reciprocal Rank (MRR), 44% in terms of Mean Average Precision (MAP), 83% in terms of top@1, 56% in terms of top@5, and 66% in terms of top@10 metrics in non-stationary setting. Further, we show that the CL techniques we studied are effective at localizing changesets relevant to a bug report while being able to mitigate catastrophic forgetting across the studied tasks and require up to 5x less computational effort during training. Our findings demonstrate the potential of adopting CL for bug localization in non-stationary settings, and we hope it helps to improve bug localization activities in Software Engineering using CL techniques.
Automatically locating buggy changesets associated with bug reports is crucial in the software development process. Deep Learning (DL)-based… (voir plus) techniques show promising results by leveraging structural information from the code and learning links between changesets and bug reports. However, since source code associated with changesets evolves, the performance of such models tends to degrade over time due to concept drift. Aiming to address this challenge, in this paper, we evaluate the potential of using Continual Learning (CL) techniques in multiple sub-tasks setting for bug localization (each of which operates on either stationary or non-stationary data), comparing it against a bug localization technique that leverages the BERT model, a deep reinforcement learning-based technique that leverages the A2C algorithm, and a DL-based function-level interaction model for semantic bug localization. Additionally, we enhanced the CL techniques by using logistic regression to identify and integrate the most significant bug-inducing factors. Our empirical evaluation across seven widely used software projects shows that CL techniques perform better than DL-based techniques by up to 61% in terms of Mean Reciprocal Rank (MRR), 44% in terms of Mean Average Precision (MAP), 83% in terms of top@1, 56% in terms of top@5, and 66% in terms of top@10 metrics in non-stationary setting. Further, we show that the CL techniques we studied are effective at localizing changesets relevant to a bug report while being able to mitigate catastrophic forgetting across the studied tasks and require up to 5x less computational effort during training. Our findings demonstrate the potential of adopting CL for bug localization in non-stationary settings, and we hope it helps to improve bug localization activities in Software Engineering using CL techniques.
Literature reviews are an essential component of scientific research, but they remain time-intensive and challenging to write, especially du… (voir plus)e to the recent influx of research papers. This paper explores the zero-shot abilities of recent Large Language Models (LLMs) in assisting with the writing of literature reviews based on an abstract. We decompose the task into two components: 1. Retrieving related works given a query abstract, and 2. Writing a literature review based on the retrieved results. We analyze how effective LLMs are for both components. For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper and then retrieves potentially relevant papers by querying an external knowledge base. Additionally, we study a prompting-based re-ranking mechanism with attribution and show that re-ranking doubles the normalized recall compared to naive search methods, while providing insights into the LLM's decision-making process. In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review. To evaluate different LLM-based literature review methods, we create test sets from arXiv papers using a protocol designed for rolling use with newly released LLMs to avoid test set contamination in zero-shot evaluations. We release this evaluation protocol to promote additional research and development in this regard. Our empirical results suggest that LLMs show promising potential for writing literature reviews when the task is decomposed into smaller components of retrieval and planning. Further, we demonstrate that our planning-based approach achieves higher-quality reviews by minimizing hallucinated references in the generated review by 18-26% compared to existing simpler LLM-based generation methods.
Combining multiple machine learning models has long been a technique for enhancing performance, particularly in distributed settings. Tradit… (voir plus)ional approaches, such as model ensembles, work well, but are expensive in terms of memory and compute. Recently, methods based on averaging model parameters have achieved good results in some settings and have gained popularity. However, merging models initialized differently that do not share a part of their training trajectories can yield worse results than simply using the base models, even after aligning their neurons. In this paper, we introduce a novel approach, Non-uniform Parameter-wise Model Merging, or NP Merge, which merges models by learning the contribution of each parameter to the final model using gradient-based optimization. We empirically demonstrate the effectiveness of our method for merging models of various architectures in multiple settings, outperforming past methods. We also extend NP Merge to handle the merging of multiple models, showcasing its scalability and robustness.
As the use of text-to-image generative models increases, so does the adoption of automatic benchmarking methods used in their evaluation. Ho… (voir plus)wever, while metrics and datasets abound, there are few unified benchmarking libraries that provide a framework for performing evaluations across many datasets and metrics. Furthermore, the rapid introduction of increasingly robust benchmarking methods requires that evaluation libraries remain flexible to new datasets and metrics. Finally, there remains a gap in synthesizing evaluations in order to deliver actionable takeaways about model performance. To enable unified, flexible, and actionable evaluations, we introduce EvalGIM (pronounced ''EvalGym''), a library for evaluating generative image models. EvalGIM contains broad support for datasets and metrics used to measure quality, diversity, and consistency of text-to-image generative models. In addition, EvalGIM is designed with flexibility for user customization as a top priority and contains a structure that allows plug-and-play additions of new datasets and metrics. To enable actionable evaluation insights, we introduce ''Evaluation Exercises'' that highlight takeaways for specific evaluation questions. The Evaluation Exercises contain easy-to-use and reproducible implementations of two state-of-the-art evaluation methods of text-to-image generative models: consistency-diversity-realism Pareto Fronts and disaggregated measurements of performance disparities across groups. EvalGIM also contains Evaluation Exercises that introduce two new analysis methods for text-to-image generative models: robustness analyses of model rankings and balanced evaluations across different prompt styles. We encourage text-to-image model exploration with EvalGIM and invite contributions at https://github.com/facebookresearch/EvalGIM/.
As the use of text-to-image generative models increases, so does the adoption of automatic benchmarking methods used in their evaluation. Ho… (voir plus)wever, while metrics and datasets abound, there are few unified benchmarking libraries that provide a framework for performing evaluations across many datasets and metrics. Furthermore, the rapid introduction of increasingly robust benchmarking methods requires that evaluation libraries remain flexible to new datasets and metrics. Finally, there remains a gap in synthesizing evaluations in order to deliver actionable takeaways about model performance. To enable unified, flexible, and actionable evaluations, we introduce EvalGIM (pronounced ''EvalGym''), a library for evaluating generative image models. EvalGIM contains broad support for datasets and metrics used to measure quality, diversity, and consistency of text-to-image generative models. In addition, EvalGIM is designed with flexibility for user customization as a top priority and contains a structure that allows plug-and-play additions of new datasets and metrics. To enable actionable evaluation insights, we introduce ''Evaluation Exercises'' that highlight takeaways for specific evaluation questions. The Evaluation Exercises contain easy-to-use and reproducible implementations of two state-of-the-art evaluation methods of text-to-image generative models: consistency-diversity-realism Pareto Fronts and disaggregated measurements of performance disparities across groups. EvalGIM also contains Evaluation Exercises that introduce two new analysis methods for text-to-image generative models: robustness analyses of model rankings and balanced evaluations across different prompt styles. We encourage text-to-image model exploration with EvalGIM and invite contributions at https://github.com/facebookresearch/EvalGIM/.
As the use of text-to-image generative models increases, so does the adoption of automatic benchmarking methods used in their evaluation. Ho… (voir plus)wever, while metrics and datasets abound, there are few unified benchmarking libraries that provide a framework for performing evaluations across many datasets and metrics. Furthermore, the rapid introduction of increasingly robust benchmarking methods requires that evaluation libraries remain flexible to new datasets and metrics. Finally, there remains a gap in synthesizing evaluations in order to deliver actionable takeaways about model performance. To enable unified, flexible, and actionable evaluations, we introduce EvalGIM (pronounced ''EvalGym''), a library for evaluating generative image models. EvalGIM contains broad support for datasets and metrics used to measure quality, diversity, and consistency of text-to-image generative models. In addition, EvalGIM is designed with flexibility for user customization as a top priority and contains a structure that allows plug-and-play additions of new datasets and metrics. To enable actionable evaluation insights, we introduce ''Evaluation Exercises'' that highlight takeaways for specific evaluation questions. The Evaluation Exercises contain easy-to-use and reproducible implementations of two state-of-the-art evaluation methods of text-to-image generative models: consistency-diversity-realism Pareto Fronts and disaggregated measurements of performance disparities across groups. EvalGIM also contains Evaluation Exercises that introduce two new analysis methods for text-to-image generative models: robustness analyses of model rankings and balanced evaluations across different prompt styles. We encourage text-to-image model exploration with EvalGIM and invite contributions at https://github.com/facebookresearch/EvalGIM/.
In this paper, we tackle the challenge of predicting stock movements in financial markets by introducing Higher Order Transformers, a novel … (voir plus)architecture designed for processing multivariate time-series data. We extend the self-attention mechanism and the transformer architecture to a higher order, effectively capturing complex market dynamics across time and variables. To manage computational complexity, we propose a low-rank approximation of the potentially large attention tensor using tensor decomposition and employ kernel attention, reducing complexity to linear with respect to the data size. Additionally, we present an encoder-decoder model that integrates technical and fundamental analysis, utilizing multimodal signals from historical prices and related tweets. Our experiments on the Stocknet dataset demonstrate the effectiveness of our method, highlighting its potential for enhancing stock movement prediction in financial markets.
In this paper, we tackle the challenge of predicting stock movements in financial markets by introducing Higher Order Transformers, a novel … (voir plus)architecture designed for processing multivariate time-series data. We extend the self-attention mechanism and the transformer architecture to a higher order, effectively capturing complex market dynamics across time and variables. To manage computational complexity, we propose a low-rank approximation of the potentially large attention tensor using tensor decomposition and employ kernel attention, reducing complexity to linear with respect to the data size. Additionally, we present an encoder-decoder model that integrates technical and fundamental analysis, utilizing multimodal signals from historical prices and related tweets. Our experiments on the Stocknet dataset demonstrate the effectiveness of our method, highlighting its potential for enhancing stock movement prediction in financial markets.
Cortical dynamics underlie many cognitive processes and emerge from complex multi-scale interactions, which are challenging to study in vivo… (voir plus). Large-scale, biophysically detailed models offer a tool which can complement laboratory approaches. We present a model comprising eight somatosensory cortex subregions, 4.2 million morphological and electrically-detailed neurons, and 13.2 billion local and mid-range synapses. In silico tools enabled reproduction and extension of complex laboratory experiments under a single parameterization, providing strong validation. The model reproduced millisecond-precise stimulus-responses, stimulus-encoding under targeted optogenetic activation, and selective propagation of stimulus-evoked activity to downstream areas. The model’s direct correspondence with biology generated predictions about how multiscale organization shapes activity; for example, how cortical activity is shaped by high-dimensional connectivity motifs in local and mid-range connectivity, and spatial targeting rules by inhibitory subpopulations. The latter was facilitated using a rewired connectome which included specific targeting rules observed for different inhibitory neuron types in electron microscopy. The model also predicted the role of inhibitory interneuron types and different layers in stimulus encoding. Simulation tools and a large subvolume of the model are made available to enable further community-driven improvement, validation and investigation.