Quantifying neurodegeneration of the cervical cord and brain in degenerative cervical myelopathy: A multicentre study using quantitative <scp>magnetic resonance imaging</scp>
Patrick Freund
Viveka Boller
Tim M. Emmenegger
Muhammad Akbar
Markus Hupp
Nikolai Pfender
Claudia A. M. Gandini Wheeler-Kingshott
Michael G. Fehlings
Armin Curt
Maryam Seif
Quantifying neurodegeneration of the cervical cord and brain in degenerative cervical myelopathy: A multicentre study using quantitative magnetic resonance imaging
Patrick Freund
Viveka Boller
Tim M. Emmenegger
Muhammad Akbar
Markus Hupp
Nikolai Pfender
Claudia A. M. Gandini Wheeler-Kingshott
Michael G. Fehlings
Armin Curt
Maryam Seif
Simultaneous assessment of neurodegeneration in both the cervical cord and brain across multiple centres can enhance the effectiveness of cl… (voir plus)inical trials. Thus, this study aims to simultaneously assess microstructural changes in the cervical cord and brain above the stenosis in degenerative cervical myelopathy (DCM) using quantitative magnetic resonance imaging (MRI) in a multicentre study.
Quantifying neurodegeneration of the cervical cord and brain in degenerative cervical myelopathy: A multicentre study using quantitative magnetic resonance imaging
Patrick Freund
Viveka Boller
Tim M. Emmenegger
Muhammad Akbar
Markus Hupp
Nikolai Pfender
Claudia A. M. Gandini Wheeler-Kingshott
Michael G. Fehlings
Armin Curt
Maryam Seif
Simultaneous assessment of neurodegeneration in both the cervical cord and brain across multiple centres can enhance the effectiveness of cl… (voir plus)inical trials. Thus, this study aims to simultaneously assess microstructural changes in the cervical cord and brain above the stenosis in degenerative cervical myelopathy (DCM) using quantitative magnetic resonance imaging (MRI) in a multicentre study.
Quantifying neurodegeneration of the cervical cord and brain in degenerative cervical myelopathy: A multicentre study using quantitative magnetic resonance imaging
Patrick Freund
Viveka Boller
Tim M. Emmenegger
Muhammad Akbar
Markus Hupp
Nikolai Pfender
Claudia A. M. Gandini Wheeler-Kingshott
Michael G. Fehlings
Armin Curt
Maryam Seif
Simultaneous assessment of neurodegeneration in both the cervical cord and brain across multiple centres can enhance the effectiveness of cl… (voir plus)inical trials. Thus, this study aims to simultaneously assess microstructural changes in the cervical cord and brain above the stenosis in degenerative cervical myelopathy (DCM) using quantitative magnetic resonance imaging (MRI) in a multicentre study.
TorchDriveEnv: A Reinforcement Learning Benchmark for Autonomous Driving with Reactive, Realistic, and Diverse Non-Playable Characters
Jonathan Wilder Lavington
Ke Zhang
Vasileios Lioutas
Matthew Niedoba
Yunpeng Liu
Dylan Green
Saeid Naderiparizi
Xiaoxuan Liang
Setareh Dabiri
Adam Ścibior
Berend Zwartsenberg
Frank N. Wood
TorchDriveEnv: A Reinforcement Learning Benchmark for Autonomous Driving with Reactive, Realistic, and Diverse Non-Playable Characters
Jonathan Wilder Lavington
Ke Zhang
Vasileios Lioutas
Matthew Niedoba
Yunpeng Liu
Dylan Green
Saeid Naderiparizi
Xiaoxuan Liang
Setareh Dabiri
Adam Ścibior
Berend Zwartsenberg
Frank N. Wood
The training, testing, and deployment, of autonomous vehicles requires realistic and efficient simulators. Moreover, because of the high var… (voir plus)iability between different problems presented in different autonomous systems, these simulators need to be easy to use, and easy to modify. To address these problems we introduce TorchDriveSim and its benchmark extension TorchDriveEnv. TorchDriveEnv is a lightweight reinforcement learning benchmark programmed entirely in Python, which can be modified to test a number of different factors in learned vehicle behavior, including the effect of varying kinematic models, agent types, and traffic control patterns. Most importantly unlike many replay based simulation approaches, TorchDriveEnv is fully integrated with a state of the art behavioral simulation API. This allows users to train and evaluate driving models alongside data driven Non-Playable Characters (NPC) whose initializations and driving behavior are reactive, realistic, and diverse. We illustrate the efficiency and simplicity of TorchDriveEnv by evaluating common reinforcement learning baselines in both training and validation environments. Our experiments show that TorchDriveEnv is easy to use, but difficult to solve.
Deep Clustering with Self-Supervision using Pairwise Similarities
Mohammadreza Sadeghi
Deep clustering incorporates embedding into clustering to find a lower-dimensional space appropriate for clustering. In this paper, we propo… (voir plus)se a novel deep clustering framework with self-supervision using pairwise similarities (DCSS). The proposed method consists of two successive phases. In the first phase, we propose to form hypersphere-like groups of similar data points, i.e. one hypersphere per cluster, employing an autoencoder that is trained using cluster-specific losses. The hyper-spheres are formed in the autoencoder's latent space. In the second phase, we propose to employ pairwise similarities to create a
Characterizing the voxel-based approaches in radioembolization dosimetry with reDoseMC.
Taehyung Peter Kim
BACKGROUND Yttrium-90 ( 90 Y …
Machine learning data practices through a data curation lens: An evaluation framework
Eshta Bhardwaj
Harshit Gujral
Siyi Wu
Ciara Zogheib
Christoph Becker
Studies of dataset development in machine learning call for greater attention to the data practices that make model development possible and… (voir plus) shape its outcomes. Many argue that the adoption of theory and practices from archives and data curation fields can support greater fairness, accountability, transparency, and more ethical machine learning. In response, this paper examines data practices in machine learning dataset development through the lens of data curation. We evaluate data practices in machine learning as data curation practices. To do so, we develop a framework for evaluating machine learning datasets using data curation concepts and principles through a rubric. Through a mixed-methods analysis of evaluation results for 25 ML datasets, we study the feasibility of data curation principles to be adopted for machine learning data work in practice and explore how data curation is currently performed. We find that researchers in machine learning, which often emphasizes model development, struggle to apply standard data curation principles. Our findings illustrate difficulties at the intersection of these fields, such as evaluating dimensions that have shared terms in both fields but non-shared meanings, a high degree of interpretative flexibility in adapting concepts without prescriptive restrictions, obstacles in limiting the depth of data curation expertise needed to apply the rubric, and challenges in scoping the extent of documentation dataset creators are responsible for. We propose ways to address these challenges and develop an overall framework for evaluation that outlines how data curation concepts and methods can inform machine learning data practices.
Sub-goal Distillation: A Method to Improve Small Language Agents
Elias Stengel-Eskin
Marc-Alexandre Côté
While Large Language Models (LLMs) have demonstrated significant promise as agents in interactive tasks, their substantial computational req… (voir plus)uirements and restricted number of calls constrain their practical utility, especially in long-horizon interactive tasks such as decision-making or in scenarios involving continuous ongoing tasks. To address these constraints, we propose a method for transferring the performance of an LLM with billions of parameters to a much smaller language model (770M parameters). Our approach involves constructing a hierarchical agent comprising a planning module, which learns through Knowledge Distillation from an LLM to generate sub-goals, and an execution module, which learns to accomplish these sub-goals using elementary actions. In detail, we leverage an LLM to annotate an oracle path with a sequence of sub-goals towards completing a goal. Subsequently, we utilize this annotated data to fine-tune both the planning and execution modules. Importantly, neither module relies on real-time access to an LLM during inference, significantly reducing the overall cost associated with LLM interactions to a fixed cost. In ScienceWorld, a challenging and multi-task interactive text environment, our method surpasses standard imitation learning based solely on elementary actions by 16.7% (absolute). Our analysis highlights the efficiency of our approach compared to other LLM-based methods. Our code and annotated data for distillation can be found on GitHub.
A Comprehensive Dataset of Four Provincial Legislative Assembly Members
Alex B. Rivard
Marc André Bodet
Éric Montigny
This research note reports on a new dataset about legislators in four Canadian provinces since the establishment of their colonial assemblie… (voir plus)s in the eighteenth century. Over 7,000 legislators from Ontario, Quebec, New Brunswick, and Nova Scotia are included, with consolidated information drawn from multiple sources about parliamentarians’ years of birth and death, religion, electoral performance, kinship, and several other biographical indicators. We also illustrate the utility of such data with the help of a few descriptive examples drawn from the four provinces. We believe this consolidated dataset offers several opportunities for future research on representation, legislative activities and party politics.
Hierarchies define the scalability of robot swarms
Vivek Shankar Vardharajan
Karthik Soma
Sepand Dyanatkar
Pierre-Yves Lajoie
The emerging behaviors of swarms have fascinated scientists and gathered significant interest in the field of robotics. Traditionally, swarm… (voir plus)s are viewed as egalitarian, with robots sharing identical roles and capabilities. However, recent findings highlight the importance of hierarchy for deploying robot swarms more effectively in diverse scenarios. Despite nature's preference for hierarchies, the robotics field has clung to the egalitarian model, partly due to a lack of empirical evidence for the conditions favoring hierarchies. Our research demonstrates that while egalitarian swarms excel in environments proportionate to their collective sensing abilities, they struggle in larger or more complex settings. Hierarchical swarms, conversely, extend their sensing reach efficiently, proving successful in larger, more unstructured environments with fewer resources. We validated these concepts through simulations and physical robot experiments, using a complex radiation cleanup task. This study paves the way for developing adaptable, hierarchical swarm systems applicable in areas like planetary exploration and autonomous vehicles. Moreover, these insights could deepen our understanding of hierarchical structures in biological organisms.