Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Inverse optimization has been increasingly used to estimate unknown parameters in an optimization model based on decision data. We show that… (see more) such a point estimation is insufficient in a prescriptive setting where the estimated parameters are used to prescribe new decisions. The prescribed decisions may be low-quality and misaligned with human intuition and thus are unlikely to be adopted. To tackle this challenge, we propose conformal inverse optimization, which seeks to learn an uncertainty set for the unknown parameters and then solve a robust optimization model to prescribe new decisions. Under mild assumptions, we show that our method enjoys provable guarantees on solution quality, as evaluated using both the ground-truth parameters and the decision maker's perception of the unknown parameters. Our method demonstrates strong empirical performance compared to classic inverse optimization.