Portrait de Aaron Courville

Aaron Courville

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur titulaire, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Communication efficace dans un jeu de somme générale
Modèles génératifs
Systèmes multi-agents
Théorie des jeux
Traitement du langage naturel
Vision par ordinateur

Biographie

Aaron Courville est professeur au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal et Directeur scientifique à IVADO. Il a obtenu son doctorat au Robotics Institute de l'Université Carnegie Mellon.

Il est l'un des premiers contributeurs à l'apprentissage profond, membre fondateur de Mila – Institut québécois d’intelligence artificielle. Avec Ian Goodfellow et Yoshua Bengio, il a coécrit le manuel de référence sur l'apprentissage profond.

Ses recherches actuelles portent sur le développement de modèles et de méthodes d'apprentissage profond. Il s'intéresse particulièrement à l'apprentissage par renforcement, à l'apprentissage par renforcement multi-agents, aux modèles génératifs profonds et au raisonnement.

Aaron Courville est titulaire d'une chaire en IA Canada-CIFAR et d'une Chaire de recherche du Canada (CRC) en généralisation systématique. Ses recherches ont été soutenues en partie par Microsoft Research, Samsung, Hitachi, Meta, Sony (bourse de recherche) et Google (bourse de recherche ciblée).

Étudiants actuels

Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - University of Waterloo
Maîtrise recherche - Université de Montréal
Doctorat - UdeM
Doctorat - UdeM
Collaborateur·rice de recherche - N/A
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Collaborateur·rice alumni - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Maîtrise recherche - UdeM
Maîtrise recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :

Publications

The Markovian Thinker
Reinforcement learning (RL) has recently become a strong recipe for training reasoning LLMs that produce long chains of thought (LongCoT). Y… (voir plus)et the standard RL"thinking environment", where the state is the prompt plus all prior reasoning tokens, makes the state unbounded and forces attention-based policies to pay quadratic compute as thoughts lengthen. We revisit the environment itself. We propose Markovian Thinking, a paradigm in which the policy advances reasoning while conditioning on a constant-size state, decoupling thinking length from context size. As an immediate consequence this yields linear compute with constant memory. We instantiate this idea with Delethink, an RL environment that structures reasoning into fixed-size chunks. Within each chunk, the model thinks as usual; at the boundary, the environment resets the context and reinitializes the prompt with a short carryover. Through RL, the policy learns to write a textual state near the end of each chunk sufficient for seamless continuation of reasoning after reset. Trained in this environment, an R1-Distill 1.5B model reasons in 8K-token chunks yet thinks up to 24K tokens, matching or surpassing LongCoT-RL trained with a 24K budget. With test-time scaling, Delethink continues to improve where LongCoT plateaus. The effect of linear compute is substantial: we empirically estimate at 96K average thinking length LongCoT-RL costs 27 H100-months vs. 7 for Delethink. Analysis at RL initialization shows off-the-shelf reasoning models (1.5B-120B) often sample Markovian traces zero-shot across diverse benchmarks, providing positive samples that make RL effective at scale. Our results show that redesigning the thinking environment is a powerful lever: it enables very long reasoning without quadratic overhead and opens a path toward efficient, scalable reasoning LLMs.
FLAM: Frame-Wise Language-Audio Modeling
Ke Chen
Oriol Nieto
Prem Seetharaman
Justin Salamon
Recent multi-modal audio-language models (ALMs) excel at text-audio retrieval but struggle with frame-wise audio understanding. Prior works … (voir plus)use temporal-aware labels or unsupervised training to improve frame-wise capabilities, but they still lack fine-grained labeling capability to pinpoint when an event occurs. While traditional sound event detection models can precisely localize events, they are limited to pre-defined categories, making them ineffective for real-world scenarios with out-of-distribution events. In this work, we introduce FLAM, an open-vocabulary contrastive audio-language model capable of localizing specific sound events. FLAM employs a memory-efficient and calibrated frame-wise objective with logit adjustment to address spurious correlations, such as event dependencies and label imbalances during training. To enable frame-wise supervision, we leverage a large-scale dataset with diverse audio events, LLM-generated captions and simulation. Experimental results and case studies demonstrate that FLAM significantly improves the open-vocabulary localization capability while maintaining strong performance in global retrieval and downstream tasks.
Mitigating Plasticity Loss in Continual Reinforcement Learning by Reducing Churn
Plasticity, or the ability of an agent to adapt to new tasks, environments, or distributions, is crucial for continual learning. In this pap… (voir plus)er, we study the loss of plasticity in deep continual RL from the lens of churn: network output variability induced by the data in each training batch. We demonstrate that (1) the loss of plasticity is accompanied by the exacerbation of churn due to the gradual rank decrease of the Neural Tangent Kernel (NTK) matrix; (2) reducing churn helps prevent rank collapse and adjusts the step size of regular RL gradients adaptively. Moreover, we introduce Continual Churn Approximated Reduction (C-CHAIN) and demonstrate it improves learning performance and outperforms baselines in a diverse range of continual learning environments on OpenAI Gym Control, ProcGen, DeepMind Control Suite, and MinAtar benchmarks.
The Courage to Stop: Overcoming Sunk Cost Fallacy in Deep Reinforcement Learning
Off-policy deep reinforcement learning (RL) agents typically leverage replay buffers for reusing past experiences during learning. This can … (voir plus)help sample efficiency when the collected data is informative and aligned with the learning objectives; when that is not the case, it has the effect of “polluting” the replay buffer with data that can exacerbate optimization challenges in addition to wasting environment interactions due to redundant sampling. We argue that sampling these uninformative and wasteful transitions can be avoided by addressing the sunk cost fallacy which, in the context of deep RL, is the tendency towards continuing an episode until termination. To address this, we propose the learn to stop (LEAST) mechanism which uses statistics based on
The Impact of On-Policy Parallelized Data Collection on Deep Reinforcement Learning Networks
The use of parallel actors for data collection has been an effective technique used in reinforcement learning (RL) algorithms. The manner in… (voir plus) which data is collected in these algorithms, controlled via the number of parallel environments and the rollout length, induces a form of bias-variance trade-off; the number of training passes over the collected data, on the other hand, must strike a balance between sample efficiency and overfitting. We conduct an empirical analysis of these trade-offs on PPO, one of the most popular RL algorithms that uses parallel actors, and establish connections to network plasticity and, more generally, optimization stability. We examine its impact on network architectures, as well as the hyper-parameter sensitivity when scaling data. Our analyses indicate that larger dataset sizes can increase final performance across a variety of settings, and that scaling parallel environments is more effective than increasing rollout lengths. These findings highlight the critical role of data collection strategies in improving agent performance.
VinePPO: Refining Credit Assignment in RL Training of LLMs
Large language models (LLMs) are increasingly applied to complex reasoning tasks that require executing several complex steps before receivi… (voir plus)ng any reward. Properly assigning credit to these steps is essential for enhancing model performance. Proximal Policy Optimization (PPO), a common reinforcement learning (RL) algorithm used for LLM finetuning, employs value networks to tackle credit assignment. However, recent approaches achieve strong results without it, raising questions about the efficacy of value networks in practice. In this work, we systematically evaluate the efficacy of value networks and reveal their significant shortcomings in reasoning-heavy LLM tasks, showing that they often produce poor estimate of expected return and barely outperform a random baseline when comparing alternative steps. This motivates our key question: Can improved credit assignment enhance RL training for LLMs? To address this, we propose VinePPO, a straightforward approach that leverages the flexibility of language environments to compute unbiased Monte Carlo-based estimates. Our method consistently outperforms PPO and other baselines across MATH and GSM8K datasets in less wall-clock time (up to 3.0x). Crucially, it achieves higher test accuracy for a given training accuracy, capturing more generalization signal per sample. These results emphasize the importance of accurate credit assignment in RL training of LLM.
Asymmetric Proximal Policy Optimization: mini-critics boost LLM reasoning
Jiashun Liu
Johan S. Obando-Ceron
Han Lu
Yancheng He
Weixun Wang
Wenbo Su
Bo Zheng
Most recent RL for LLMs (RL4LLM) methods avoid explicit critics, replacing them with average advantage baselines. This shift is largely prag… (voir plus)matic: conventional value functions are computationally expensive to train at LLM scale and often fail under sparse rewards and long reasoning horizons. We revisit this bottleneck from an architectural perspective and introduce Asymmetric Proximal Policy Optimization (AsyPPO), a simple and scalable framework that restores the critics role while remaining efficient in large-model settings. AsyPPO employs a set of lightweight mini-critics, each trained on disjoint prompt shards. This design encourages diversity while preserving calibration, reducing value-estimation bias. Beyond robust estimation, AsyPPO leverages inter-critic uncertainty to refine the policy update: (i) masking advantages in states where critics agree and gradients add little learning signal, and (ii) filtering high-divergence states from entropy regularization, suppressing spurious exploration. After training on open-source data with only 5,000 samples, AsyPPO consistently improves learning stability and performance across multiple benchmarks over strong baselines, such as GRPO, achieving performance gains of more than six percent on Qwen3-4b-Base and about three percent on Qwen3-8b-Base and Qwen3-14b-Base over classic PPO, without additional tricks. These results highlight the importance of architectural innovations for scalable, efficient algorithms.
BiXSE: Improving Dense Retrieval via Probabilistic Graded Relevance Distillation
Neural sentence embedding models for dense retrieval typically rely on binary relevance labels, treating query-document pairs as either rele… (voir plus)vant or irrelevant. However, real-world relevance often exists on a continuum, and recent advances in large language models (LLMs) have made it feasible to scale the generation of fine-grained graded relevance labels. In this work, we propose BiXSE, a simple and effective pointwise training method that optimizes binary cross-entropy (BCE) over LLM-generated graded relevance scores. BiXSE interprets these scores as probabilistic targets, enabling granular supervision from a single labeled query-document pair per query. Unlike pairwise or listwise losses that require multiple annotated comparisons per query, BiXSE achieves strong performance with reduced annotation and compute costs by leveraging in-batch negatives. Extensive experiments across sentence embedding (MMTEB) and retrieval benchmarks (BEIR, TREC-DL) show that BiXSE consistently outperforms softmax-based contrastive learning (InfoNCE), and matches or exceeds strong pairwise ranking baselines when trained on LLM-supervised data. BiXSE offers a robust, scalable alternative for training dense retrieval models as graded relevance supervision becomes increasingly accessible.
BiXSE: Improving Dense Retrieval via Probabilistic Graded Relevance Distillation
Neural sentence embedding models for dense retrieval typically rely on binary relevance labels, treating query-document pairs as either rele… (voir plus)vant or irrelevant. However, real-world relevance often exists on a continuum, and recent advances in large language models (LLMs) have made it feasible to scale the generation of fine-grained graded relevance labels. In this work, we propose BiXSE, a simple and effective pointwise training method that optimizes binary cross-entropy (BCE) over LLM-generated graded relevance scores. BiXSE interprets these scores as probabilistic targets, enabling granular supervision from a single labeled query-document pair per query. Unlike pairwise or listwise losses that require multiple annotated comparisons per query, BiXSE achieves strong performance with reduced annotation and compute costs by leveraging in-batch negatives. Extensive experiments across sentence embedding (MMTEB) and retrieval benchmarks (BEIR, TREC-DL) show that BiXSE consistently outperforms softmax-based contrastive learning (InfoNCE), and matches or exceeds strong pairwise ranking baselines when trained on LLM-supervised data. BiXSE offers a robust, scalable alternative for training dense retrieval models as graded relevance supervision becomes increasingly accessible.
Sample, Predict, then Proceed: Self-Verification Sampling for Tool Use of LLMs
Shangmin Guo
Omar Darwiche Domingues
Raphaël Avalos
Tool use in stateful environments presents unique challenges for large language models (LLMs), where existing test-time compute strategies r… (voir plus)elying on repeated trials in the environment are impractical. We propose dynamics modelling (DyMo), a method that augments LLMs with a state prediction capability alongside function calling during post-training. This enables LLMs to predict the future states of their actions through an internal environment model. On the Berkeley Function Calling Leaderboard V2, DyMo improves success rates and significantly reduces hallucinations. We further integrate the internal environment model into self-verification sampling (SVS), and show that this substantially improves pass^k over number of trials k, and allows the model to refuse unreliable outputs. Together, DyMo and SVS greatly enhance the effectiveness and reliability of LLMs for tool use. We believe this work charts a path towards scalable planning RL methods for LLM inference without repeatedly querying the oracle environment.
Compositional Discrete Latent Code for High Fidelity, Productive Diffusion Models
We argue that diffusion models'success in modeling complex distributions is, for the most part, coming from their input conditioning. This p… (voir plus)aper investigates the representation used to condition diffusion models from the perspective that ideal representations should improve sample fidelity, be easy to generate, and be compositional to allow out-of-training samples generation. We introduce Discrete Latent Code (DLC), an image representation derived from Simplicial Embeddings trained with a self-supervised learning objective. DLCs are sequences of discrete tokens, as opposed to the standard continuous image embeddings. They are easy to generate and their compositionality enables sampling of novel images beyond the training distribution. Diffusion models trained with DLCs have improved generation fidelity, establishing a new state-of-the-art for unconditional image generation on ImageNet. Additionally, we show that composing DLCs allows the image generator to produce out-of-distribution samples that coherently combine the semantics of images in diverse ways. Finally, we showcase how DLCs can enable text-to-image generation by leveraging large-scale pretrained language models. We efficiently finetune a text diffusion language model to generate DLCs that produce novel samples outside of the image generator training distribution.
Adaptive Computation Pruning for the Forgetting Transformer
The recently proposed Forgetting Transformer (FoX) incorporates a forget gate into softmax attention and has shown consistently better or on… (voir plus)-par performance compared to the standard RoPE-based Transformer. Notably, many attention heads in FoX tend to forget quickly, causing their output at each timestep to rely primarily on local context. Based on this observation, we propose Adaptive Computation Pruning (ACP) for FoX, a method that dynamically prunes computations involving input-output dependencies that are strongly decayed by the forget gate. In particular, our method performs *provably safe* pruning via a dynamically set pruning threshold that guarantees the pruned attention weights are negligible. We apply ACP to language model pretraining with FoX and show it consistently reduces the number of FLOPs and memory accesses in softmax attention by around 70\% across different model sizes and context lengths, resulting in a roughly 50\% to 70\% reduction in attention runtime (or a 2--3