Le Studio d'IA pour le climat de Mila vise à combler l’écart entre la technologie et l'impact afin de libérer le potentiel de l'IA pour lutter contre la crise climatique rapidement et à grande échelle.
Le programme a récemment publié sa première note politique, intitulée « Considérations politiques à l’intersection des technologies quantiques et de l’intelligence artificielle », réalisée par Padmapriya Mohan.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
The Butterfly Effect: Tiny Perturbations Cause Neural Network Training to Diverge
Neural network training begins with a chaotic phase in which the network is sensitive to small perturbations, such as those caused by stocha… (voir plus)stic gradient descent (SGD). This sensitivity can cause identically initialized networks to diverge both in parameter space and functional similarity.
However, the exact degree to which networks are sensitive to perturbation, and the sensitivity of networks as they transition out of the chaotic phase, is unclear.
To address this uncertainty, we apply a controlled perturbation at a single point in training time and measure its effect on otherwise identical training trajectories.
We find that both the
Discrete audio tokens have recently gained attention for their potential to bridge the gap between audio and language processing. Ideal audi… (voir plus)o tokens must preserve content, paralinguistic elements, speaker identity, and many other audio details. Current audio tokenization methods fall into two categories: Semantic tokens, acquired through quantization of Self-Supervised Learning (SSL) models, and Neural compression-based tokens (codecs). Although previous studies have benchmarked codec models to identify optimal configurations, the ideal setup for quantizing pretrained SSL models remains unclear. This paper explores the optimal configuration of semantic tokens across discriminative and generative tasks. We propose a scalable solution to train a universal vocoder across multiple SSL layers. Furthermore, an attention mechanism is employed to identify task-specific influential layers, enhancing the adaptability and performance of semantic tokens in diverse audio applications.
This work presents a novel approach that synergistically integrates convolutional neural networks (CNNs) and Transformer models for decoding… (voir plus) continuous fine finger motions from surface electromyography (sEMG) signals. This integration capitalizes on CNNs’ proficiency in extracting rich temporal and spatial features from multichannel sEMG data and the Transformer’s superior capability in recognizing complex patterns and long-range dependencies. A significant advancement in this field is the use of a custom-developed Epidermal Electrode Array Sleeve (EEAS) for capturing high-fidelity sEMG signals, enabling more accurate and reliable signal acquisition than traditional methods. The decoded joint angles could be used in seamless and intuitive human-machine interaction in various applications, such as virtual reality, augmented reality, robotic control, and prosthetic control. Evaluations demonstrate the superior performance of the proposed CNN-Transformer hybrid architecture in decoding continuous fine finger motions, outperforming individual CNN and Transformer models. The synergistic integration of CNNs and Transformers presents a powerful framework for sEMG decoding, offering exciting opportunities for naturalistic and intuitive human-machine interaction applications. Its robustness and efficiency make it an ideal choice for real-world applications, promising to enhance the interface between humans and machines significantly. The implications of this research extend to advancing the understanding of human neuromuscular signals and their application in computing interfaces.
2024-06-14
2024 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA) (publié)
Multi-relational temporal graphs are powerful tools for modeling real-world data, capturing the evolving and interconnected nature of entiti… (voir plus)es over time. Recently, many novel models are proposed for ML on such graphs intensifying the need for robust evaluation and standardized benchmark datasets. However, the availability of such resources remains scarce and evaluation faces added complexity due to reproducibility issues in experimental protocols. To address these challenges, we introduce Temporal Graph Benchmark 2.0 (TGB 2.0), a novel benchmarking framework tailored for evaluating methods for predicting future links on Temporal Knowledge Graphs and Temporal Heterogeneous Graphs with a focus on large-scale datasets, extending the Temporal Graph Benchmark. TGB 2.0 facilitates comprehensive evaluations by presenting eight novel datasets spanning five domains with up to 53 million edges. TGB 2.0 datasets are significantly larger than existing datasets in terms of number of nodes, edges, or timestamps. In addition, TGB 2.0 provides a reproducible and realistic evaluation pipeline for multi-relational temporal graphs. Through extensive experimentation, we observe that 1) leveraging edge-type information is crucial to obtain high performance, 2) simple heuristic baselines are often competitive with more complex methods, 3) most methods fail to run on our largest datasets, highlighting the need for research on more scalable methods.
Malware, especially ransomware, has dramatically increased in volume and sophistication in recent years. The growing complexity and destruct… (voir plus)ive potential of ransomware demand effective countermeasures. Despite tremendous efforts by the security community to document these threats, reliance on manual analysis makes it challenging to discern unique malware variants from polymorphic variants. Moreover, the easy accessibility of source code of prominent ransomware families in public domains has led to the rise of numerous variants, complicating manual detection and hindering the identification of phylogenetic relationships. This paper introduces a novel approach that narrows the focus to analyze one such prominent ransomware family, Virlock. Using binary code similarity, we systematically reconstruct the lineage of Virlock, tracing its relationships, evolution, and variants. Employing this technique on a dataset of over 1000 Virlock samples submitted to VirusTotal and VirusShare, our analysis unveils intricate relationships within the Virlock ransomware family, offering valuable insights into the tangled relationships of this ransomware.
2024-06-14
International Conference on Computational Collective Intelligence (publié)