JaxPruner: A concise library for sparsity research
Joo Hyung Lee
Wonpyo Park
Nicole Elyse Mitchell
Jonathan Pilault
Johan Samir Obando Ceron
Han-Byul Kim
Namhoon Lee
Elias Frantar
Yun Long
Amir Yazdanbakhsh
Shivani Agrawal
Suvinay Subramanian
Xin Wang
Sheng-Chun Kao
Xingyao Zhang
Trevor Gale
Aart J.C. Bik
Woohyun Han
Milen Ferev
Zhonglin Han … (see 5 more)
Hong-Seok Kim
Yann Dauphin
Utku Evci
This paper introduces JaxPruner, an open-source JAX-based pruning and sparse training library for machine learning research. JaxPruner aims … (see more)to accelerate research on sparse neural networks by providing concise implementations of popular pruning and sparse training algorithms with minimal memory and latency overhead. Algorithms implemented in JaxPruner use a common API and work seamlessly with the popular optimization library Optax, which, in turn, enables easy integration with existing JAX based libraries. We demonstrate this ease of integration by providing examples in four different codebases: Scenic, t5x, Dopamine and FedJAX and provide baseline experiments on popular benchmarks.
GABAergic inhibition shapes behavior and neural dynamics in human visual working memory
Jan Kujala
Carolina Ciumas
Julien Jung
Sandrine Bouvard
Françoise Lecaignard
Amélie Lothe
Romain Bouet
Philippe Ryvlin
Abstract Neuronal inhibition, primarily mediated by GABAergic neurotransmission, is crucial for brain development and healthy cognition. Gam… (see more)ma-aminobutyric acid concentration levels in sensory areas have been shown to correlate with hemodynamic and oscillatory neuronal responses. How these measures relate to one another during working memory, a higher-order cognitive process, is still poorly understood. We address this gap by collecting magnetoencephalography, functional magnetic resonance imaging, and Flumazenil positron emission tomography data within the same subject cohort using an n-back working-memory paradigm. By probing the relationship between GABAA receptor distribution, neural oscillations, and Blood Oxygen Level Dependent (BOLD) modulations, we found that GABAA receptor density in higher-order cortical areas predicted the reaction times on the working-memory task and correlated positively with the peak frequency of gamma power modulations and negatively with BOLD amplitude. These findings support and extend theories linking gamma oscillations and hemodynamic responses to gamma-aminobutyric acid neurotransmission and to the excitation-inhibition balance and cognitive performance in humans. Considering the small sample size of the study, future studies should test whether these findings also hold for other, larger cohorts as well as to examine in detail how the GABAergic system and neural fluctuations jointly support working-memory task performance.
Functional Labeled Optimal Partitioning
Jacob M. Kaufman
Alyssa J. Stenberg
On the Stability of a non-hyperbolic nonlinear map with non-bounded set of non-isolated fixed points with applications to Machine Learning
Roberta Hansen
Matias Vera
Lautaro Estienne
LUCIANA FERRER
Towards Enhancing the Reproducibility of Deep Learning Bugs: An Empirical Study
Mehil B. Shah
Mohammad Masudur Rahman
Context: Deep learning has achieved remarkable progress in various domains. However, like any software system, deep learning systems contain… (see more) bugs, some of which can have severe impacts, as evidenced by crashes involving autonomous vehicles. Despite substantial advancements in deep learning techniques, little research has focused on reproducing deep learning bugs, which is an essential step for their resolution. Existing literature suggests that only 3% of deep learning bugs are reproducible, underscoring the need for further research. Objective: This paper examines the reproducibility of deep learning bugs. We identify edit actions and useful information that could improve the reproducibility of deep learning bugs. Method: First, we construct a dataset of 668 deep-learning bugs from Stack Overflow and GitHub across three frameworks and 22 architectures. Second, out of the 668 bugs, we select 165 bugs using stratified sampling and attempt to determine their reproducibility. While reproducing these bugs, we identify edit actions and useful information for their reproduction. Third, we used the Apriori algorithm to identify useful information and edit actions required to reproduce specific types of bugs. Finally, we conducted a user study involving 22 developers to assess the effectiveness of our findings in real-life settings. Results: We successfully reproduced 148 out of 165 bugs attempted. We identified ten edit actions and five useful types of component information that can help us reproduce the deep learning bugs. With the help of our findings, the developers were able to reproduce 22.92% more bugs and reduce their reproduction time by 24.35%. Conclusions: Our research addresses the critical issue of deep learning bug reproducibility. Practitioners and researchers can leverage our findings to improve deep learning bug reproducibility.
Are LLMs Robust for Spoken Dialogues?
Seyed Mahed Mousavi
Gabriel Roccabruna
Simone Alghisi
Massimo Rizzoli
Giuseppe Riccardi
Large Pre-Trained Language Models have demonstrated state-of-the-art performance in different downstream tasks, including dialogue state tra… (see more)cking and end-to-end response generation. Nevertheless, most of the publicly available datasets and benchmarks on task-oriented dialogues focus on written conversations. Consequently, the robustness of the developed models to spoken interactions is unknown. In this work, we have evaluated the performance of LLMs for spoken task-oriented dialogues on the DSTC11 test sets. Due to the lack of proper spoken dialogue datasets, we have automatically transcribed a development set of spoken dialogues with a state-of-the-art ASR engine. We have characterized the ASR-error types and their distributions and simulated these errors in a large dataset of dialogues. We report the intrinsic (perplexity) and extrinsic (human evaluation) performance of fine-tuned GPT-2 and T5 models in two subtasks of response generation and dialogue state tracking, respectively. The results show that LLMs are not robust to spoken noise by default, however, fine-tuning/training such models on a proper dataset of spoken TODs can result in a more robust performance.
A primer on the use of machine learning to distil knowledge from data in biological psychiatry.
Thomas P. Quinn
Jonathan L. Hess
Victoria S. Marshe
Michelle M. Barnett
Anne-Christin Hauschild
Malgorzata Maciukiewicz
Samar S. M. Elsheikh
Xiaoyu Men
Emanuel Schwarz
Michael S. Breen
Eric J. Barnett
Yanli Zhang-James
Mehmet Eren Ahsen
Han Cao
Junfang Chen
Jiahui Hou
Asif Salekin
Ping-I Lin
Kristin K. Nicodemus … (see 7 more)
Andreas Meyer-Lindenberg
Isabelle Bichindaritz
Stephen V. Faraone
Murray J. Cairns
Gaurav Pandey
Daniel J. Müller
Stephen J. Glatt
A primer on the use of machine learning to distil knowledge from data in biological psychiatry.
Thomas P. Quinn
Jonathan L. Hess
Victoria S. Marshe
Michelle M. Barnett
Anne-Christin Hauschild
Malgorzata Maciukiewicz
Samar S. M. Elsheikh
Xiaoyu Men
Emanuel Schwarz
Michael S. Breen
Eric J. Barnett
Yanli Zhang-James
Mehmet Eren Ahsen
Han Cao
Junfang Chen
Jiahui Hou
Asif Salekin
Ping-I Lin
Kristin K. Nicodemus … (see 7 more)
Andreas Meyer-Lindenberg
Isabelle Bichindaritz
Stephen V. Faraone
Murray J. Cairns
Gaurav Pandey
Daniel J. Müller
Stephen J. Glatt
AITA: AI trustworthiness assessment
Bertrand Braunschweig
Stefan Buijsman
Faicel Chamroukhi
Fredrik Heintz
Juliette Mattioli
Maximilian Poretschkin
Bag of Tricks for Fully Test-Time Adaptation
Saypraseuth Mounsaveng
Florent Chiaroni
Malik Boudiaf
Ismail Ben Ayed
Fully Test-Time Adaptation (TTA), which aims at adapting models to data drifts, has recently attracted wide interest. Numerous tricks and te… (see more)chniques have been proposed to ensure robust learning on arbitrary streams of unlabeled data. However, assessing the true impact of each individual technique and obtaining a fair comparison still constitutes a significant challenge. To help consolidate the community’s knowledge, we present a categorization of selected orthogonal TTA techniques, including small batch normalization, stream rebalancing, reliable sample selection, and network confidence calibration. We meticulously dissect the effect of each approach on different scenarios of interest. Through our analysis, we shed light on trade-offs induced by those techniques between accuracy, the computational power required, and model complexity. We also uncover the synergy that arises when combining techniques and are able to establish new state-of-the-art results.
A Column Generation Scheme for Distributionally Robust Multi-Item Newsvendor Problems
Shanshan Wang
This paper studies a distributionally robust multi-item newsvendor problem, where the demand distribution is unknown but specified with a ge… (see more)neral event-wise ambiguity set. Using the event-wise affine decision rules, we can obtain a conservative approximation formulation of the problem, which can typically be further reformulated as a linear program. In order to efficiently solve the resulting large-scale linear program, we develop a column generation-based decomposition scheme and speed up the computational efficiency by exploiting a special column selection strategy and stopping early based on a Karush-Kuhn-Tucker condition test. Focusing on the Wasserstein ambiguity set and the event-wise mean absolute deviation set, a computational study demonstrates both the computational efficiency of the proposed algorithm, which significantly outperforms a commercial solver and a Benders decomposition method, and the out-of-sample superiority of distributionally robust solutions relative to their sample average approximation counterparts. History: Accepted by Nicola Secomandi, Area Editor for Stochastic Models & Reinforcement Learning. Funding: This work was supported by the Natural Sciences and Engineering Research Council of Canada [492997-2016, RGPIN-2016-05208], the National Natural Science Foundation of China [71972012], Alliance de recherche numérique du Canada, and Canada Research Chairs [CRC-2018-00105]. It was also supported by Groupe d’études et de recherche en analyse des décisions (GERAD). Finally, this research was enabled in part by support provided by Digital Research Alliance of Canada ( https://alliancecan.ca/en ). Supplemental Material: The software that supports the findings of this study is available within the paper and its supplemental information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0010 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0010 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
Dataset Difficulty and the Role of Inductive Bias
Devin Kwok
Nikhil Anand
Jonathan Frankle
Motivated by the goals of dataset pruning and defect identification, a growing body of methods have been developed to score individual examp… (see more)les within a dataset. These methods, which we call"example difficulty scores", are typically used to rank or categorize examples, but the consistency of rankings between different training runs, scoring methods, and model architectures is generally unknown. To determine how example rankings vary due to these random and controlled effects, we systematically compare different formulations of scores over a range of runs and model architectures. We find that scores largely share the following traits: they are noisy over individual runs of a model, strongly correlated with a single notion of difficulty, and reveal examples that range from being highly sensitive to insensitive to the inductive biases of certain model architectures. Drawing from statistical genetics, we develop a simple method for fingerprinting model architectures using a few sensitive examples. These findings guide practitioners in maximizing the consistency of their scores (e.g. by choosing appropriate scoring methods, number of runs, and subsets of examples), and establishes comprehensive baselines for evaluating scores in the future.