Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Faithfulness measures whether chain-of-thought (CoT) representations accurately reflect a model's decision process and can be used as reliab… (see more)le explanations. Prior work has shown that CoTs from text-based LLMs are often unfaithful. This question has not been explored for large audio-language models (LALMs), where faithfulness is critical for safety-sensitive applications. Reasoning in LALMs is also more challenging, as models must first extract relevant clues from audio before reasoning over them. In this paper, we investigate the faithfulness of CoTs produced by several LALMs by applying targeted interventions, including paraphrasing, filler token injection, early answering, and introducing mistakes, on two challenging reasoning datasets: SAKURA and MMAR. After going through the aforementioned interventions across several datasets and tasks, our experiments suggest that, LALMs generally produce CoTs that appear to be faithful to their underlying decision processes.
Faithfulness measures whether chain-of-thought (CoT) representations accurately reflect a model's decision process and can be used as reliab… (see more)le explanations. Prior work has shown that CoTs from text-based LLMs are often unfaithful. This question has not been explored for large audio-language models (LALMs), where faithfulness is critical for safety-sensitive applications. Reasoning in LALMs is also more challenging, as models must first extract relevant clues from audio before reasoning over them. In this paper, we investigate the faithfulness of CoTs produced by several LALMs by applying targeted interventions, including paraphrasing, filler token injection, early answering, and introducing mistakes, on two challenging reasoning datasets: SAKURA and MMAR. After going through the aforementioned interventions across several datasets and tasks, our experiments suggest that, LALMs generally produce CoTs that appear to be faithful to their underlying decision processes.
Discrete audio tokens are compact representations that aim to preserve perceptual quality, phonetic content, and speaker characteristics whi… (see more)le enabling efficient storage and inference, as well as competitive performance across diverse downstream tasks. They provide a practical alternative to continuous features, enabling the integration of speech and audio into modern large language models (LLMs). As interest in token-based audio processing grows, various tokenization methods have emerged, and several surveys have reviewed the latest progress in the field. However, existing studies often focus on specific domains or tasks and lack a unified comparison across various benchmarks. This paper presents a systematic review and benchmark of discrete audio tokenizers, covering three domains: speech, music, and general audio. We propose a taxonomy of tokenization approaches based on encoder-decoder, quantization techniques, training paradigm, streamability, and application domains. We evaluate tokenizers on multiple benchmarks for reconstruction, downstream performance, and acoustic language modeling, and analyze trade-offs through controlled ablation studies. Our findings highlight key limitations, practical considerations, and open challenges, providing insight and guidance for future research in this rapidly evolving area. For more information, including our main results and tokenizer database, please refer to our website: https://poonehmousavi.github.io/dates-website/.
Discrete audio tokens are compact representations that aim to preserve perceptual quality, phonetic content, and speaker characteristics whi… (see more)le enabling efficient storage and inference, as well as competitive performance across diverse downstream tasks.They provide a practical alternative to continuous features, enabling the integration of speech and audio into modern large language models (LLMs). As interest in token-based audio processing grows, various tokenization methods have emerged, and several surveys have reviewed the latest progress in the field. However, existing studies often focus on specific domains or tasks and lack a unified comparison across various benchmarks. This paper presents a systematic review and benchmark of discrete audio tokenizers, covering three domains: speech, music, and general audio. We propose a taxonomy of tokenization approaches based on encoder-decoder, quantization techniques, training paradigm, streamability, and application domains. We evaluate tokenizers on multiple benchmarks for reconstruction, downstream performance, and acoustic language modeling, and analyze trade-offs through controlled ablation studies. Our findings highlight key limitations, practical considerations, and open challenges, providing insight and guidance for future research in this rapidly evolving area. For more information, including our main results and tokenizer database, please refer to our website: https://poonehmousavi.github.io/dates-website/.
Foundation models based on large language models (LLMs) have shown great success in handling various tasks and modalities. However, adapting… (see more) these models for general-purpose audio-language tasks is challenging due to differences in acoustic environments and task variations. In this work, we introduce LiSTEN Learning Soft Token Embeddings for Neural Audio LLMs), a framework for adapting LLMs to speech and audio tasks. LiSTEN uses a dynamic prompt selection strategy with learnable key-value pairs, allowing the model to balance general and task-specific knowledge while avoiding overfitting in a multitask setting. Our approach reduces dependence on large-scale ASR or captioning datasets, achieves competitive performance with fewer trainable parameters, and simplifies training by using a single-stage process. Additionally, LiSTEN enhances interpretability by analyzing the diversity and overlap of selected prompts across different tasks.
Foundation models based on large language models (LLMs) have shown great success in handling various tasks and modalities. However, adapting… (see more) these models for general-purpose audio-language tasks is challenging due to differences in acoustic environments and task variations. In this work, we introduce LiSTEN Learning Soft Token Embeddings for Neural Audio LLMs), a framework for adapting LLMs to speech and audio tasks. LiSTEN uses a dynamic prompt selection strategy with learnable key-value pairs, allowing the model to balance general and task-specific knowledge while avoiding overfitting in a multitask setting. Our approach reduces dependence on large-scale ASR or captioning datasets, achieves competitive performance with fewer trainable parameters, and simplifies training by using a single-stage process. Additionally, LiSTEN enhances interpretability by analyzing the diversity and overlap of selected prompts across different tasks.
Discrete audio tokens are compact representations that aim to preserve perceptual quality, phonetic content, and speaker characteristics whi… (see more)le enabling efficient storage and inference, as well as competitive performance across diverse downstream tasks. They provide a practical alternative to continuous features, enabling the integration of speech and audio into modern large language models (LLMs). As interest in token-based audio processing grows, various tokenization methods have emerged, and several surveys have reviewed the latest progress in the field. However, existing studies often focus on specific domains or tasks and lack a unified comparison across various benchmarks. This paper presents a systematic review and benchmark of discrete audio tokenizers, covering three domains: speech, music, and general audio. We propose a taxonomy of tokenization approaches based on encoder-decoder, quantization techniques, training paradigm, streamability, and application domains. We evaluate tokenizers on multiple benchmarks for reconstruction, downstream performance, and acoustic language modeling, and analyze trade-offs through controlled ablation studies. Our findings highlight key limitations, practical considerations, and open challenges, providing insight and guidance for future research in this rapidly evolving area. For more information, including our main results and tokenizer database, please refer to our website: https://poonehmousavi.github.io/dates-website/.
In audio and speech processing, tasks usually focus on either the audio or speech modality, even when both sounds and human speech are prese… (see more)nt in the same audio clip. Recent Auditory Large Language Models (ALLMs) have made it possible to process audio and speech simultaneously within a single model, leading to further considerations of joint audio-speech tasks. In this paper, we establish a novel benchmark to investigate how well ALLMs can perform joint audio-speech processing. Specifically, we introduce Joint Audio-Speech Co-Reasoning (JASCO), a novel task that unifies audio and speech processing, strictly requiring co-reasoning across both modalities. We also release a scene-reasoning dataset called"What Are They Doing". Additionally, we provide deeper insights into the models' behaviors by analyzing their dependence on each modality.
SpeechBrain is an open-source Conversational AI toolkit based on PyTorch, focused particularly on speech processing tasks such as speech rec… (see more)ognition, speech enhancement, speaker recognition, text-to-speech, and much more. It promotes transparency and replicability by releasing both the pre-trained models and the complete"recipes"of code and algorithms required for training them. This paper presents SpeechBrain 1.0, a significant milestone in the evolution of the toolkit, which now has over 200 recipes for speech, audio, and language processing tasks, and more than 100 models available on Hugging Face. SpeechBrain 1.0 introduces new technologies to support diverse learning modalities, Large Language Model (LLM) integration, and advanced decoding strategies, along with novel models, tasks, and modalities. It also includes a new benchmark repository, offering researchers a unified platform for evaluating models across diverse tasks.
SpeechBrain is an open-source Conversational AI toolkit based on PyTorch, focused particularly on speech processing tasks such as speech rec… (see more)ognition, speech enhancement, speaker recognition, text-to-speech, and much more. It promotes transparency and replicability by releasing both the pre-trained models and the complete"recipes"of code and algorithms required for training them. This paper presents SpeechBrain 1.0, a significant milestone in the evolution of the toolkit, which now has over 200 recipes for speech, audio, and language processing tasks, and more than 100 models available on Hugging Face. SpeechBrain 1.0 introduces new technologies to support diverse learning modalities, Large Language Model (LLM) integration, and advanced decoding strategies, along with novel models, tasks, and modalities. It also includes a new benchmark repository, offering researchers a unified platform for evaluating models across diverse tasks