We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Influence of scanning plane on Human Spinal Cord functional Magnetic Resonance echo planar imaging
BACKGROUND: Functional Magnetic Resonance Imaging (fMRI) is based on the Blood Oxygenation Level Dependent contrast and has been exploited f… (see more)or the indirect study of the neuronal activity within both the brain and the spinal cord. However, the interpretation of spinal cord fMRI (scfMRI) is still controversial and its diffusion is rather limited because of technical limitations. Overcoming these limitations would have a beneficial effect for the assessment and follow-up of spinal injuries and neurodegenerative diseases. PURPOSE: This study was aimed at systematically verify whether sagittal scanning in scfMRI using EPI readout is a viable alternative to the more common axial scanning, and at optimizing a pipeline for EPI-based scfMRI data analysis, based on Spinal Cord Toolbox (SCT). METHODS: Forty-five healthy subjects underwent MRI acquisition in a Philips Achieva 3T MRI scanner. T2*-weighted fMRI data were acquired using a GE-EPI sequence along sagittal and axial planes during an isometric motor task. Differences on benchmarks were assessed via paired two-sample t-test at p=0.05. RESULTS: We investigated the impact of the acquisition strategy by means of various metrics such as Temporal Signal to Noise Ratio (tSNR), Dice Coefficient to assess geometric distortions, Reproducibility and Sensitivity. tSNR was higher in axial than in sagittal scans, as well as reproducibility within the whole cord mask (t=7.4, p0.01) and within the GM mask (t=4.2, p0.01). The other benchmarks, associated with distortion and functional response, showed no differenc
This article presents an appendix to the original NeBula autonomy solution developed by the Team Collaborative SubTerranean Autonomous Robot… (see more)s (CoSTAR), participating in the DARPA Subterranean Challenge. Specifically, this article presents extensions to NeBula’s hardware, software, and algorithmic components that focus on increasing the range and scale of the exploration environment. From the algorithmic perspective, we discuss the following extensions to the original NeBula framework: 1) large-scale geometric and semantic environment mapping; 2) an adaptive positioning system; 3) probabilistic traversability analysis and local planning; 4) large-scale partially observable Markov decision process (POMDP)-based global motion planning and exploration behavior; 5) large-scale networking and decentralized reasoning; 6) communicationaware mission planning; and 7) multimodal ground–aerial exploration solutions.We demonstrate the application and deployment of the presented systems and solutions in various large-scale underground environments, including limestone mine exploration scenarios as well as deployment in the DARPA Subterranean challenge.
This paper presents an appendix to the original NeBula autonomy solution [Agha et al., 2021] developed by the TEAM CoSTAR (Collaborative Sub… (see more)Terranean Autonomous Robots), participating in the DARPA Subterranean Challenge. Specifically, this paper presents extensions to NeBula’s hardware, software, and algorithmic components that focus on increasing the range and scale of the exploration environment. From the algorithmic perspective, we discuss the following extensions to the original NeBula framework: (i) large-scale geometric and semantic environment mapping; (ii) an adaptive positioning system; (iii) probabilistic traversability analysis and local planning; (iv) large-scale POMDPbased global motion planning and exploration behavior; (v) large-scale networking and decentralized reasoning; (vi) communication-aware mission planning; and (vii) multi-modal ground-aerial exploration solutions. We demonstrate the application and deployment of the presented systems and solutions in various large-scale underground environments, including limestone mine exploration scenarios as well as deployment in the DARPA Subterranean challenge.