GPAI Report & Policy Guide: Towards Substantive Equality in AI
Join us at Mila on November 26 for the launch of the report and policy guide that outlines actionable recommendations for building inclusive AI ecosystems.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
NEURAL MANIFOLDS AND GRADIENT-BASED ADAPTATION IN NEURAL-INTERFACE TASKS
. Neural activity tends to reside on manifolds whose dimension is much lower than the dimension of the whole neural state space. Experiments… (see more) using brain-computer interfaces with microelectrode arrays implanted in the motor cortex of nonhuman primates tested the hypothesis that external perturbations should produce different adaptation strategies depending on how “aligned” the perturbation is with respect to a pre-existing intrinsic manifold. On the one hand, perturbations within the manifold (WM) evoked fast reassociations of existing patterns for rapid adaptation. On the other hand, perturbations outside the manifold (OM) triggered the slow emergence of new neural patterns underlying a much slower—and, without adequate training protocols, inconsistent or virtually impossible—adaptation. This suggests that the time scale and the overall difficulty of the brain to adapt depend fundamentally on the structure of neural activity. Here, we used a simplified static Gaussian model to show that gradient-descent learning could explain the differences between adaptation to WM and OM perturbations. For small learning rates, we found that the adaptation speeds were different but the model eventually adapted to both perturbations. Moreover, sufficiently large learning rates could entirely prohibit adaptation to OM perturbations while preserving adaptation to WM perturbations, in agreement with experiments. Adopting an incremental training protocol, as has been done in experiments, permitted a swift recovery of a full adaptation in the cases where OM perturbations were previously impossible to relearn. Finally, we also found that gradient descent was compatible with the reassociation mechanism on short adaptation time scales. Since gradient descent has many biologically plausible variants, our findings thus establish gradient-based learning as a plausible mechanism for adaptation under network-level constraints, with a central role for the learning rate.
. Neural activity tends to reside on manifolds whose dimension is much lower than the dimension of the whole neural state space. Experiments… (see more) using brain-computer interfaces with microelectrode arrays implanted in the motor cortex of nonhuman primates tested the hypothesis that external perturbations should produce different adaptation strategies depending on how “aligned” the perturbation is with respect to a pre-existing intrinsic manifold. On the one hand, perturbations within the manifold (WM) evoked fast reassociations of existing patterns for rapid adaptation. On the other hand, perturbations outside the manifold (OM) triggered the slow emergence of new neural patterns underlying a much slower—and, without adequate training protocols, inconsistent or virtually impossible—adaptation. This suggests that the time scale and the overall difficulty of the brain to adapt depend fundamentally on the structure of neural activity. Here, we used a simplified static Gaussian model to show that gradient-descent learning could explain the differences between adaptation to WM and OM perturbations. For small learning rates, we found that the adaptation speeds were different but the model eventually adapted to both perturbations. Moreover, sufficiently large learning rates could entirely prohibit adaptation to OM perturbations while preserving adaptation to WM perturbations, in agreement with experiments. Adopting an incremental training protocol, as has been done in experiments, permitted a swift recovery of a full adaptation in the cases where OM perturbations were previously impossible to relearn. Finally, we also found that gradient descent was compatible with the reassociation mechanism on short adaptation time scales. Since gradient descent has many biologically plausible variants, our findings thus establish gradient-based learning as a plausible mechanism for adaptation under network-level constraints, with a central role for the learning rate.
(1) N (x; θ) = Ll+1 ○ σl ○Ll ○ σl−1 ○ . . . ○ σ1 ○L1. The symbol Lk denotes the k’s affine operator of the form Lk(x) = … (see more)Akx + bk, while σk denotes a nonlinear function called an activation function. The activation functions are chosen by the user. The matrices Ak and shift vectors (or bias vectors) bk are encoded into the argument θ: θ = {Ak, bk} l+1 k=1. The term training neural network means finding {Ak, bk} l+1 k=1 such that N (x; θ) satisfies certain conditions. These conditions are described by the loss function chosen by the user. For example, one might want the neural network to assume certain values fj at certain points xj , j = 1, . . . ,N . These points x are called the training data. In this case, a common choice of the loss function is the least squares error:
Opinion summarization research has primar-001 ily focused on generating summaries reflect-002 ing important opinions from customer reviews 0… (see more)03 without paying much attention to the writing 004 style. In this paper, we propose the stylized 005 opinion summarization task, which aims to 006 generate a summary of customer reviews in 007 the desired (e.g., professional) writing style. 008 To tackle the difficulty in collecting customer 009 and professional review pairs, we develop a 010 non-parallel training framework, Noisy Pair-011 ing and Partial Supervision ( NAPA ), which 012 trains a stylized opinion summarization sys-013 tem from non-parallel customer and profes-014 sional review sets. We create a benchmark P RO - 015 S UM by collecting customer and professional 016 reviews from Yelp and Michelin. Experimental 017 results on P RO S UM and FewSum demonstrate 018 that our non-parallel training framework con-019 sistently improves both automatic and human 020 evaluations, successfully building a stylized 021 opinion summarization model that can gener-022 ate professionally-written summaries from cus-023 tomer reviews. 024
Sharpness-aware minimization (SAM) was proposed to reduce sharpness of minima and has been shown to enhance generalization performance in va… (see more)rious settings. In this work we show that perturbing only the affine normalization parameters (typically comprising 0.1% of the total parameters) in the adversarial step of SAM can outperform perturbing all of the parameters.This finding generalizes to different SAM variants and both ResNet (Batch Normalization) and Vision Transformer (Layer Normalization) architectures. We consider alternative sparse perturbation approaches and find that these do not achieve similar performance enhancement at such extreme sparsity levels, showing that this behaviour is unique to the normalization layers. Although our findings reaffirm the effectiveness of SAM in improving generalization performance, they cast doubt on whether this is solely caused by reduced sharpness.
We consider online optimization problems with time-varying linear equality constraints. In this framework, an agent makes sequential decisio… (see more)ns using only prior information. At every round, the agent suffers an environment-determined loss and must satisfy time-varying constraints. Both the loss functions and the constraints can be chosen adversarially. We propose the Online Projected Equality-constrained Newton Method (OPEN-M) to tackle this family of problems. We obtain sublinear dynamic regret and constraint violation bounds for OPEN-M under mild conditions. Namely, smoothness of the loss function and boundedness of the inverse Hessian at the optimum are required, but not convexity. Finally, we show OPEN-M outperforms state-of-the-art online constrained optimization algorithms in a numerical network flow application.
Neural machine translation (NMT) has become the de-facto standard in real-world machine translation applications. However, NMT models can un… (see more)predictably produce severely pathological translations, known as hallucinations, that seriously undermine user trust. It becomes thus crucial to implement effective preventive strategies to guarantee their proper functioning. In this paper, we address the problem of hallucination detection in NMT by following a simple intuition: as hallucinations are detached from the source content, they exhibit encoder-decoder attention patterns that are statistically different from those of good quality translations. We frame this problem with an optimal transport formulation and propose a fully unsupervised, plug-in detector that can be used with any attention-based NMT model. Experimental results show that our detector not only outperforms all previous model-based detectors, but is also competitive with detectors that employ external models trained on millions of samples for related tasks such as quality estimation and cross-lingual sentence similarity.
D'epartement d'informatique et de recherche op'erationnelle
U. Montr'eal
S. O. Mathematics
U. Edinburgh
Institut de Recherche d'Hydro-Qu'ebec
We present a new model for finding the optimal placement of electric vehicle charging stations across a multiperiod time frame so as to maxi… (see more)mise electric vehicle adoption. Via the use of stochastic discrete choice models and user classes, this work allows for a granular modelling of user attributes and their preferences in regard to charging station characteristics. We adopt a simulation approach and precompute error terms for each option available to users for a given number of scenarios. This results in a bilevel optimisation model that is, however, intractable for all but the simplest instances. Our major contribution is a reformulation into a maximum covering model, which uses the precomputed error terms to calculate the users covered by each charging station. This allows solutions to be found more efficiently than for the bilevel formulation. The maximum covering formulation remains intractable in some instances, so we propose rolling horizon, greedy, and greedy randomised adaptive search procedure heuristics to obtain good-quality solutions more efficiently. Extensive computational results are provided, and they compare the maximum covering formulation with the current state of the art for both exact solutions and the heuristic methods. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This work was supported by Hydro-Québec and the Natural Sciences and Engineering Research Council of Canada [Discovery grant 2017-06054; Collaborative Research and Development Grant CRDPJ 536757–19]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoc.2022.0185 .
We extend PAC-Bayesian theory to generative models and develop generalization bounds for models based on the Wasserstein distance and the to… (see more)tal variation distance. Our first result on the Wasserstein distance assumes the instance space is bounded, while our second result takes advantage of dimensionality reduction. Our results naturally apply to Wasserstein GANs and Energy-Based GANs, and our bounds provide new training objectives for these two. Although our work is mainly theoretical, we perform numerical experiments showing non-vacuous generalization bounds for Wasserstein GANs on synthetic datasets.