Publications

Learning Inter-Modal Correspondence and Phenotypes From Multi-Modal Electronic Health Records
Kejing Yin
William K. Cheung
Jonathan Poon
Non-negative tensor factorization has been shown a practical solution to automatically discover phenotypes from the electronic health record… (see more)s (EHR) with minimal human supervision. Such methods generally require an input tensor describing the inter-modal interactions to be pre-established; however, the correspondence between different modalities (e.g., correspondence between medications and diagnoses) can often be missing in practice. Although heuristic methods can be applied to estimate them, they inevitably introduce errors, and leads to sub-optimal phenotype quality. This is particularly important for patients with complex health conditions (e.g., in critical care) as multiple diagnoses and medications are simultaneously present in the records. To alleviate this problem and discover phenotypes from EHR with unobserved inter-modal correspondence, we propose the collective hidden interaction tensor factorization (cHITF) to infer the correspondence between multiple modalities jointly with the phenotype discovery. We assume that the observed matrix for each modality is marginalization of the unobserved inter-modal correspondence, which are reconstructed by maximizing the likelihood of the observed matrices. Extensive experiments conducted on the real-world MIMIC-III dataset demonstrate that cHITF effectively infers clinically meaningful inter-modal correspondence, discovers phenotypes that are more clinically relevant and diverse, and achieves better predictive performance compared with a number of state-of-the-art computational phenotyping models.
A Learning Metaheuristic Algorithm for a Scheduling Application
Nazgol Niroumandrad
Nadia Lahrichi
Learning Representations for New Sound Classes With Continual Self-Supervised Learning
Zhepei Wang
Xilin Jiang
Junkai Wu
Efthymios Tzinis
Paris Smaragdis
In this article, we work on a sound recognition system that continually incorporates new sound classes. Our main goal is to develop a framew… (see more)ork where the model can be updated without relying on labeled data. For this purpose, we propose adopting representation learning, where an encoder is trained using unlabeled data. This learning framework enables the study and implementation of a practically relevant use case where only a small amount of the labels is available in a continual learning context. We also make the empirical observation that a similarity-based representation learning method within this framework is robust to forgetting even if no explicit mechanism against forgetting is employed. We show that this approach obtains similar performance compared to several distillation-based continual learning methods when employed on self-supervised representation learning methods.
Learning What You Need from What You Did: Product Taxonomy Expansion with User Behaviors Supervision
Sijie Cheng
Zhouhong Gu
Rui Xie
Wei Wu
Yanghua Xiao
Taxonomies have been widely used in various domains to underpin numerous applications. Specially, product taxonomies serve an essential role… (see more) in the e-commerce domain for the recommendation, browsing, and query understanding. However, taxonomies need to constantly capture the newly emerged terms or concepts in e-commerce platforms to keep up-to-date, which is expensive and labor-intensive if it relies on manual maintenance and updates. Therefore, we target the taxonomy expansion task to attach new concepts to existing taxonomies automatically. In this paper, we present a self-supervised and user behavior-oriented product taxonomy expansion framework to append new concepts into existing taxonomies. Our framework extracts hyponymy relations that conform to users' intentions and cognition. Specifically, i) to fully exploit user behavioral information, we extract candidate hyponymy relations that match user interests from query-click concepts; ii) to enhance the semantic information of new concepts and better detect hyponymy relations, we model concepts and relations through both user-generated content and structural information in existing taxonomies and user click logs, by leveraging Pre-trained Language Models and Graph Neural Network combined with Contrastive Learning; iii) to reduce the cost of dataset construction and overcome data skews, we construct a high-quality and balanced training dataset from existing taxonomy with no supervision. Extensive experiments on real-world product taxonomies in Meituan Platform, a leading Chinese vertical e-commerce platform to order take-out with more than 70 million daily active users, demonstrate the superiority of our proposed framework over state-of-the-art methods. Notably, our method enlarges the size of real-world product taxonomies from 39,263 to 94,698 relations with 88% precision. Our implementation is available: https://github.com/AdaCheng/Product_Taxonomy_Expansion.
Learning with Rejection for Abstractive Text Summarization
Meng Cao
Yue Dong
Jingyi He
Long Range Graph Benchmark
Vijay Prakash Dwivedi
Ladislav Rampášek
Mikhail Galkin
Ali Parviz
Anh Tuan Luu
Graph Neural Networks (GNNs) that are based on the message passing (MP) paradigm generally exchange information between 1-hop neighbors to b… (see more)uild node representations at each layer. In principle, such networks are not able to capture long-range interactions (LRI) that may be desired or necessary for learning a given task on graphs. Recently, there has been an increasing interest in development of Transformer-based methods for graphs that can consider full node connectivity beyond the original sparse structure, thus enabling the modeling of LRI. However, MP-GNNs that simply rely on 1-hop message passing often fare better in several existing graph benchmarks when combined with positional feature representations, among other innovations, hence limiting the perceived utility and ranking of Transformer-like architectures. Here, we present the Long Range Graph Benchmark (LRGB) with 5 graph learning datasets: PascalVOC-SP, COCO-SP, PCQM-Contact, Peptides-func and Peptides-struct that arguably require LRI reasoning to achieve strong performance in a given task. We benchmark both baseline GNNs and Graph Transformer networks to verify that the models which capture long-range dependencies perform significantly better on these tasks. Therefore, these datasets are suitable for benchmarking and exploration of MP-GNNs and Graph Transformer architectures that are intended to capture LRI.
MCVD: Masked Conditional Video Diffusion for Prediction, Generation, and Interpolation
Vikram Voleti
Alexia Jolicoeur-Martineau
Video prediction is a challenging task. The quality of video frames from current state-of-the-art (SOTA) generative models tends to be poor … (see more)and generalization beyond the training data is difficult. Furthermore, existing prediction frameworks are typically not capable of simultaneously handling other video-related tasks such as unconditional generation or interpolation. In this work, we devise a general-purpose framework called Masked Conditional Video Diffusion (MCVD) for all of these video synthesis tasks using a probabilistic conditional score-based denoising diffusion model, conditioned on past and/or future frames. We train the model in a manner where we randomly and independently mask all the past frames or all the future frames. This novel but straightforward setup allows us to train a single model that is capable of executing a broad range of video tasks, specifically: future/past prediction -- when only future/past frames are masked; unconditional generation -- when both past and future frames are masked; and interpolation -- when neither past nor future frames are masked. Our experiments show that this approach can generate high-quality frames for diverse types of videos. Our MCVD models are built from simple non-recurrent 2D-convolutional architectures, conditioning on blocks of frames and generating blocks of frames. We generate videos of arbitrary lengths autoregressively in a block-wise manner. Our approach yields SOTA results across standard video prediction and interpolation benchmarks, with computation times for training models measured in 1-12 days using
Metro: Memory-Enhanced Transformer for Retrosynthetic Planning via Reaction Tree
Songtao Liu
Zhitao Ying
Rex Ying
Zuobai Zhang
Peilin Zhao
Lu Lin
Dinghao Wu
Retrosynthetic planning plays a critical role in drug discovery and organic chemistry. Starting from a target molecule as the root node, it … (see more)aims to find a complete reaction tree subject to the constraint that all leaf nodes belong to a set of starting materials. The multi-step reactions are crucial because they determine the flow chart in the production of the Organic Chemical Industry. However, existing datasets lack curation of tree-structured multi-step reactions, and fail to provide such reaction trees, limiting models’ understanding of organic molecule transformations. In this work, we first develop a benchmark curated for the retrosynthetic planning task, which consists of 124,869 reaction trees retrieved from the public USPTO-full dataset. On top of that, we propose Metro: Memory-Enhanced Transformer for RetrOsynthetic planning. Specifically, the dependency among molecules in the reaction tree is captured as context information for multi-step retrosynthesis predictions through transformers with a memory module. Extensive experiments show that Metro dramatically outperforms existing single-step retrosynthesis models by at least 10.7% in top-1 accuracy. The experiments demonstrate the superiority of exploiting context information in the retrosynthetic planning task. Moreover, the proposed model can be directly used for synthetic accessibility analysis, as it is trained on reaction trees with the shortest depths. Our work is the first step towards a brand new formulation for retrosynthetic planning in the aspects of data construction, model design, and evaluation. Code is available at https://github.com/SongtaoLiu0823/metro.
Multi-Head Adapter Routing for Data-Efficient Fine-Tuning
Lucas Caccia
Edoardo Ponti
Lu Liu
Matheus Pereira
Parameter-efficient fine-tuning (PEFT) methods can adapt large language models to downstream tasks by training a small amount of newly add… (see more)ed parameters. In multi-task settings, PEFT adapters typically train on each task independently, inhibiting transfer across tasks, or on the concatenation of all tasks, which can lead to negative interference. To address this, Polytropon [Ponti et al., 2022] jointly learns an inventory of PEFT adapters and a routing function to share variable-size sets of adapters across tasks. Subsequently, adapters can be re-combined and fine-tuned on novel tasks even with limited data. In this paper, we investigate to what extent the ability to control which adapters are active for each task leads to sample-efficient generalization. Thus, we propose less expressive variants where we perform weighted averaging of the adapters before few-shot adaptation ( Poly - µ ) instead of learning a routing function. Moreover, we introduce more expressive variants where finer-grained task–adapter allocation is learned through a multi-head routing function ( Poly - S ). We test these variants on three separate benchmarks for multi-task learning. We find that Poly - S achieves gains on all three (up to 5.3 points on average) over strong baselines, while incurring a negligible additional cost in parameter count. In particular, we find that instruction tuning, where models are fully fine-tuned on natural language instructions for each task, is inferior to modular methods such as Polytropon and our proposed variants.
Multilingual Language Model Adaptive Fine-Tuning: A Study on African Languages
Jesujoba Oluwadara Alabi
Marius Mosbach
Dietrich Klakow
and XLM-R) and three NLP tasks (NER, news topic classification, and sentiment classification) shows that our approach is competitive to ap… (see more)plying LAFT on individual languages while requiring significantly less disk space. Finally, we show that our adapted PLM also improves the zero-shot cross-lingual transfer abilities of parameter efficient fine-tuning methods.
Optimizing deep learning for Magnetoencephalography (MEG): From sensory perception to sex prediction and brain fingerprinting
Arthur Dehgan
Peer-to-Peer Energy Trading and Energy Conversion in Interconnected Multi-Energy Microgrids Using Multi-Agent Deep Reinforcement Learning
Tianyi Chen
Shengrong Bu
Jikun Kang
F. Richard Yu
Zhu Han
A key aspect of multi-energy microgrids (MEMGs) is the capability to efficiently convert and store energy in order to reduce the costs and e… (see more)nvironmental impact. Peer-to-peer (P2P) energy trading is a novel paradigm for decentralised energy market designs. In this paper, we investigate the external P2P energy trading problem and internal energy conversion problem within interconnected residential, commercial and industrial MEMGs. These two problems are complex decision-making problems with enormous high-dimensional data and uncertainty, so a multi-agent deep reinforcement learning approach combining the multi-agent actor-critic algorithm with the twin delayed deep deterministic policy gradient algorithm is proposed. The proposed approach can handle the high-dimensional continuous action space and aligns with the nature of P2P energy trading with multiple MEMGs. Simulation results based on three real-world MG datasets show that the proposed approach significantly reduces each MG’s average hourly operation cost. The impact of carbon tax pricing is also considered.