Découvrez le dernier rapport d'impact de Mila, qui met en lumière les réalisations exceptionnelles des membres de notre communauté au cours de la dernière année.
Rapport et guide politique GPAI: Vers une réelle égalité en IA
Rejoignez-nous à Mila le 26 novembre pour le lancement du rapport et du guide politique qui présente des recommandations concrètes pour construire des écosystèmes d'IA inclusifs.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Towards Detecting Contextual Real-Time Toxicity for In-Game Chat
Real-time toxicity detection in online environments poses a significant challenge, due to the increasing prevalence of social media and gami… (voir plus)ng platforms. We introduce ToxBuster, a simple and scalable model that reliably detects toxic content in real-time for a line of chat by including chat history and metadata. ToxBuster consistently outperforms conventional toxicity models across popular multiplayer games, including Rainbow Six Siege, For Honor, and DOTA 2. We conduct an ablation study to assess the importance of each model component and explore ToxBuster's transferability across the datasets. Furthermore, we showcase ToxBuster's efficacy in post-game moderation, successfully flagging 82.1% of chat-reported players at a precision level of 90.0%. Additionally, we show how an additional 6% of unreported toxic players can be proactively moderated.
Agents that can learn to imitate given video observation -- \emph{without direct access to state or action information} are more applicable … (voir plus)to learning in the natural world. However, formulating a reinforcement learning (RL) agent that facilitates this goal remains a significant challenge. We approach this challenge using contrastive training to learn a reward function comparing an agent's behaviour with a single demonstration. We use a Siamese recurrent neural network architecture to learn rewards in space and time between motion clips while training an RL policy to minimize this distance. Through experimentation, we also find that the inclusion of multi-task data and additional image encoding losses improve the temporal consistency of the learned rewards and, as a result, significantly improves policy learning. We demonstrate our approach on simulated humanoid, dog, and raptor agents in 2D and a quadruped and a humanoid in 3D. We show that our method outperforms current state-of-the-art techniques in these environments and can learn to imitate from a single video demonstration.
Law enforcement and domain experts can detect human trafficking (HT) in online escort websites by analyzing suspicious clusters of connected… (voir plus) ads. How can we explain clustering results intuitively and interactively, visualizing potential evidence for experts to analyze? We present TrafficVis, the first interface for cluster-level HT detection and labeling. Developed through months of participatory design with domain experts, TrafficVis provides coordinated views in conjunction with carefully chosen backend algorithms to effectively show spatio-temporal and text patterns to a wide variety of anti-HT stakeholders. We build upon state-of-the-art text clustering algorithms by incorporating shared metadata as a signal of connected and possibly suspicious activity, then visualize the results. Domain experts can use TrafficVis to label clusters as HT, or other, suspicious, but non-HT activity such as spam and scam, quickly creating labeled datasets to enable further HT research. Through domain expert feedback and a usage scenario, we demonstrate TRAFFICVIS's efficacy. The feedback was overwhelmingly positive, with repeated high praises for the usability and explainability of our tool, the latter being vital for indicting possible criminals.
2023-01-01
IEEE Transactions on Visualization and Computer Graphics (publié)
21 Transposable elements (TE) are repetitive sequences representing ~45% of the human and mouse genomes 22 and are highly expressed by medul… (voir plus)lary thymic epithelial cells (mTEC). In this study, we investigated the 23 role of transposable elements (TE), which are highly expressed by medullary thymic epithelial cells 24 (mTEC), on T-cell development in the thymus. We performed multi-omic analyses of TEs in human and 25 mouse thymic cells to elucidate their role in T cell development. We report that TE expression in the 26 human thymus is high and shows extensive ageand cell lineage-related variations. TEs interact with 27 multiple transcription factors in all cell types of the human thymus. Two cell types express particularly 28 broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDC). In mTECs, TEs interact with 29 transcription factors essential for mTEC development and function (e.g., PAX1 and RELB) and generate 30 MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 31 regulate non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large 32 numbers of TEs that lead to the formation of dsRNA, triggering RIG-I and MDA5 signaling and 33 explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study illustrates the diversity of 34 interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic 35 cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. 36 Therefore, we propose that the orchestration of TE expression in thymic cells is critical to prevent 37 autoimmunity in vertebrates. 38
21 Transposable elements (TE) are repetitive sequences representing ~45% of the human and mouse genomes 22 and are highly expressed by medul… (voir plus)lary thymic epithelial cells (mTEC). In this study, we investigated the 23 role of transposable elements (TE), which are highly expressed by medullary thymic epithelial cells 24 (mTEC), on T-cell development in the thymus. We performed multi-omic analyses of TEs in human and 25 mouse thymic cells to elucidate their role in T cell development. We report that TE expression in the 26 human thymus is high and shows extensive ageand cell lineage-related variations. TEs interact with 27 multiple transcription factors in all cell types of the human thymus. Two cell types express particularly 28 broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDC). In mTECs, TEs interact with 29 transcription factors essential for mTEC development and function (e.g., PAX1 and RELB) and generate 30 MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 31 regulate non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large 32 numbers of TEs that lead to the formation of dsRNA, triggering RIG-I and MDA5 signaling and 33 explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study illustrates the diversity of 34 interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic 35 cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. 36 Therefore, we propose that the orchestration of TE expression in thymic cells is critical to prevent 37 autoimmunity in vertebrates. 38
Aim: Trophic interactions are central to our understanding of essential ecosystem functions as well as their stability. Predicting these int… (voir plus)eractions has become increasingly common due to the lack of empirical data on trophic interactions for most taxa in most ecosystems. We aim to determine how far and accurately trophic interaction models extrapolate to new communities both in terms of pairwise predator-prey interactions and higher level food web attributes (i.e., species position, food web-level properties).