Portrait de Pablo Samuel Castro

Pablo Samuel Castro

Membre industriel principal
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Chercheur scientifique, Google DeepMind
Sujets de recherche
Apprentissage par renforcement

Biographie

Pablo Samuel Castro est né et a grandi à Quito, en Équateur, et a déménagé à Montréal après l'école secondaire pour étudier à l’Université McGill. Il y a obtenu un doctorat en se concentrant sur l'apprentissage par renforcement, sous la supervision de Doina Precup et Prakash Panangaden. Il est chercheur scientifique à Google DeepMind à Montréal. Il s’intéresse particulièrement à la recherche fondamentale sur l'apprentissage par renforcement et plaide régulièrement en faveur d'une augmentation de la représentation des personnes d’origine latino-américaine dans la communauté de recherche. Il est également professeur adjoint au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal. Outre son intérêt pour le codage, l'intelligence artificielle et les mathématiques, Pablo Samuel est un musicien actif.

Étudiants actuels

Doctorat - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Collaborateur·rice de recherche
Doctorat - UdeM
Collaborateur·rice de recherche
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM

Publications

Bigger, Better, Faster: Human-level Atari with human-level efficiency
Max Schwarzer
Johan Samir Obando Ceron
Rishabh Agarwal
We introduce a value-based RL agent, which we call BBF, that achieves super-human performance in the Atari 100K benchmark. BBF relies on sca… (voir plus)ling the neural networks used for value estimation, as well as a number of other design choices that enable this scaling in a sample-efficient manner. We conduct extensive analyses of these design choices and provide insights for future work. We end with a discussion about updating the goalposts for sample-efficient RL research on the ALE. We make our code and data publicly available at https://github.com/google-research/google-research/tree/master/bigger_better_faster.
Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks
Jesse Farebrother
Joshua Greaves
Rishabh Agarwal
Charline Le Lan
Ross Goroshin
Auxiliary tasks improve the representations learned by deep reinforcement learning agents. Analytically, their effect is reasonably well-und… (voir plus)erstood; in practice, how-ever, their primary use remains in support of a main learning objective, rather than as a method for learning representations. This is perhaps surprising given that many auxiliary tasks are defined procedurally, and hence can be treated as an essentially infinite source of information about the environment. Based on this observation, we study the effectiveness of auxiliary tasks for learning rich representations, focusing on the setting where the number of tasks and the size of the agent’s network are simultaneously increased. For this purpose, we derive a new family of auxiliary tasks based on the successor measure. These tasks are easy to implement and have appealing theoretical properties. Combined with a suitable off-policy learning rule, the result is a representation learning algorithm that can be understood as extending Mahadevan & Maggioni (2007)’s proto-value functions to deep reinforcement learning – accordingly, we call the resulting object proto-value networks. Through a series of experiments on the Arcade Learning Environment, we demonstrate that proto-value networks produce rich features that may be used to obtain performance comparable to established algorithms, using only linear approximation and a small number (~4M) of interactions with the environment’s reward function.
Bigger, Better, Faster: Human-level Atari with human-level efficiency
Max Schwarzer
Johan Samir Obando Ceron
Rishabh Agarwal
We introduce a value-based RL agent, which we call BBF, that achieves super-human performance in the Atari 100K benchmark. BBF relies on sca… (voir plus)ling the neural networks used for value estimation, as well as a number of other design choices that enable this scaling in a sample-efficient manner. We conduct extensive analyses of these design choices and provide insights for future work. We end with a discussion about updating the goalposts for sample-efficient RL research on the ALE. We make our code and data publicly available at https://github.com/google-research/google-research/tree/master/bigger_better_faster.
A Kernel Perspective on Behavioural Metrics for Markov Decision Processes
Tyler Kastner
Mark Rowland
We present a novel perspective on behavioural metrics for Markov decision processes via the use of positive definite kernels. We define a ne… (voir plus)w metric under this lens that is provably equivalent to the recently introduced MICo distance (Castro et al., 2021). The kernel perspective enables us to provide new theoretical results, including value-function bounds and low-distortion finite-dimensional Euclidean embeddings, which are crucial when using behavioural metrics for reinforcement learning representations. We complement our theory with strong empirical results that demonstrate the effectiveness of these methods in practice.
The Dormant Neuron Phenomenon in Deep Reinforcement Learning
Ghada Sokar
Rishabh Agarwal
Utku Evci
In this work we identify the dormant neuron phenomenon in deep reinforcement learning, where an agent's network suffers from an increasing n… (voir plus)umber of inactive neurons, thereby affecting network expressivity. We demonstrate the presence of this phenomenon across a variety of algorithms and environments, and highlight its effect on learning. To address this issue, we propose a simple and effective method (ReDo) that Recycles Dormant neurons throughout training. Our experiments demonstrate that ReDo maintains the expressive power of networks by reducing the number of dormant neurons and results in improved performance.
The Small Batch Size Anomaly in Multistep Deep Reinforcement Learning
Johan Samir Obando Ceron
Variance Double-Down: The Small Batch Size Anomaly in Multistep Deep Reinforcement Learning
Johan Samir Obando Ceron
In deep reinforcement learning, multi-step learning is almost unavoidable to achieve state-of-the-art performance. However, the increased va… (voir plus)riance that multistep learning brings makes it difficult to increase the update horizon beyond relatively small numbers. In this paper, we report the counterintuitive finding that decreasing the batch size parameter improves the performance of many standard deep RL agents that use multi-step learning. It is well-known that gradient variance decreases with increasing batch sizes, so obtaining improved performance by increasing variance on two fronts is a rather surprising finding. We conduct a broad set of experiments to better understand what we call the variance doubledown phenomenon.
A general class of surrogate functions for stable and efficient reinforcement learning
Sharan Vaswani
Olivier Bachem
Simone Totaro
Robert Lynn Mueller
Shivam Garg
Matthieu Geist
Marlos C. Machado
Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress
Metrics and continuity in reinforcement learning
Contrastive Behavioral Similarity Embeddings for Generalization in Reinforcement Learning
Rishabh Agarwal
Marlos C. Machado
Reinforcement learning methods trained on few environments rarely learn policies that generalize to unseen environments. To improve generali… (voir plus)zation, we incorporate the inherent sequential structure in reinforcement learning into the representation learning process. This approach is orthogonal to recent approaches, which rarely exploit this structure explicitly. Specifically, we introduce a theoretically motivated policy similarity metric (PSM) for measuring behavioral similarity between states. PSM assigns high similarity to states for which the optimal policies in those states as well as in future states are similar. We also present a contrastive representation learning procedure to embed any state similarity metric, which we instantiate with PSM to obtain policy similarity embeddings (PSEs). We demonstrate that PSEs improve generalization on diverse benchmarks, including LQR with spurious correlations, a jumping task from pixels, and Distracting DM Control Suite.
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Deep reinforcement learning (RL) algorithms are predominantly evaluated by comparing their relative performance on a large suite of tasks. M… (voir plus)ost published results on deep RL benchmarks compare point estimates of aggregate performance such as mean and median scores across tasks, ignoring the statistical uncertainty implied by the use of a finite number of training runs. Beginning with the Arcade Learning Environment (ALE), the shift towards computationally-demanding benchmarks has led to the practice of evaluating only a small number of runs per task, exacerbating the statistical uncertainty in point estimates. In this paper, we argue that reliable evaluation in the few run deep RL regime cannot ignore the uncertainty in results without running the risk of slowing down progress in the field. We illustrate this point using a case study on the Atari 100k benchmark, where we find substantial discrepancies between conclusions drawn from point estimates alone versus a more thorough statistical analysis. With the aim of increasing the field's confidence in reported results with a handful of runs, we advocate for reporting interval estimates of aggregate performance and propose performance profiles to account for the variability in results, as well as present more robust and efficient aggregate metrics, such as interquartile mean scores, to achieve small uncertainty in results. Using such statistical tools, we scrutinize performance evaluations of existing algorithms on other widely used RL benchmarks including the ALE, Procgen, and the DeepMind Control Suite, again revealing discrepancies in prior comparisons. Our findings call for a change in how we evaluate performance in deep RL, for which we present a more rigorous evaluation methodology, accompanied with an open-source library rliable, to prevent unreliable results from stagnating the field. This work received an outstanding paper award at NeurIPS 2021.