Hackathon | Créer une IA plus sécuritaire pour la santé mentale des jeunes
Du 16 au 23 mars 2026, rejoignez une communauté dynamique dédiée à exploiter la puissance de l'IA pour créer des solutions favorisant le bien-être mental des jeunes.
Apprenez à tirer parti de l’IA générative pour soutenir et améliorer votre productivité au travail. La prochaine cohorte se déroulera en ligne les 24 et 26 février 2026, en anglais.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Lecteur Multimédia
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Actor-critic methods have been central to many of the recent advances in deep reinforcement learning. The most common approach is to use _sy… (voir plus)mmetric_ architectures, whereby both actor and critic have the same network topology and number of parameters. However, recent works have argued for the advantages of _asymmetric_ setups, specifically with the use of smaller actors. We perform broad empirical investigations and analyses to better understand the implications of this and find that, in general, smaller actors result in performance degradation and overfit critics. Our analyses suggest _poor data collection_, due to value underestimation, as one of the main causes for this behavior, and further highlight the crucial role the critic can play in alleviating this pathology. We explore techniques to mitigate the observed value underestimation, which enables further research in asymmetric actor-critic methods.
Actor-critic methods have been central to many of the recent advances in deep reinforcement learning. The most common approach is to use _sy… (voir plus)mmetric_ architectures, whereby both actor and critic have the same network topology and number of parameters. However, recent works have argued for the advantages of _asymmetric_ setups, specifically with the use of smaller actors. We perform broad empirical investigations and analyses to better understand the implications of this and find that, in general, smaller actors result in performance degradation and overfit critics. Our analyses suggest _poor data collection_, due to value underestimation, as one of the main causes for this behavior, and further highlight the crucial role the critic can play in alleviating this pathology. We explore techniques to mitigate the observed value underestimation, which enables further research in asymmetric actor-critic methods.