Portrait of Olya Mastikhina is unavailable

Olya Mastikhina

PhD - Université de Montréal
Supervisor
Research Topics
Consciousness
Creativity
Reinforcement Learning
Representation Learning

Publications

Optimistic critics can empower small actors
Actor-critic methods have been central to many of the recent advances in deep reinforcement learning. The most common approach is to use _sy… (see more)mmetric_ architectures, whereby both actor and critic have the same network topology and number of parameters. However, recent works have argued for the advantages of _asymmetric_ setups, specifically with the use of smaller actors. We perform broad empirical investigations and analyses to better understand the implications of this and find that, in general, smaller actors result in performance degradation and overfit critics. Our analyses suggest _poor data collection_, due to value underestimation, as one of the main causes for this behavior, and further highlight the crucial role the critic can play in alleviating this pathology. We explore techniques to mitigate the observed value underestimation, which enables further research in asymmetric actor-critic methods.
Optimistic critics can empower small actors
Actor-critic methods have been central to many of the recent advances in deep reinforcement learning. The most common approach is to use _sy… (see more)mmetric_ architectures, whereby both actor and critic have the same network topology and number of parameters. However, recent works have argued for the advantages of _asymmetric_ setups, specifically with the use of smaller actors. We perform broad empirical investigations and analyses to better understand the implications of this and find that, in general, smaller actors result in performance degradation and overfit critics. Our analyses suggest _poor data collection_, due to value underestimation, as one of the main causes for this behavior, and further highlight the crucial role the critic can play in alleviating this pathology. We explore techniques to mitigate the observed value underestimation, which enables further research in asymmetric actor-critic methods.