Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Recent works have proposed accelerating the wall-clock training time of actor-critic methods via the use of large-scale environment parallel… (voir plus)ization; unfortunately, these can sometimes still require large number of environment interactions to achieve a desired level of performance. Noting that well-structured representations can improve the generalization and sample efficiency of deep reinforcement learning (RL) agents, we propose the use of simplicial embeddings: lightweight representation layers that constrain embeddings to simplicial structures. This geometric inductive bias results in sparse and discrete features that stabilize critic bootstrapping and strengthen policy gradients. When applied to FastTD3, FastSAC, and PPO, simplicial embeddings consistently improve sample efficiency and final performance across a variety of continuous- and discrete-control environments, without any loss in runtime speed.
Recent works have proposed accelerating the wall-clock training time of actor-critic methods via the use of large-scale environment parallel… (voir plus)ization; unfortunately, these can sometimes still require large number of environment interactions to achieve a desired level of performance. Noting that well-structured representations can improve the generalization and sample efficiency of deep reinforcement learning (RL) agents, we propose the use of simplicial embeddings: lightweight representation layers that constrain embeddings to simplicial structures. This geometric inductive bias results in sparse and discrete features that stabilize critic bootstrapping and strengthen policy gradients. When applied to FastTD3, FastSAC, and PPO, simplicial embeddings consistently improve sample efficiency and final performance across a variety of continuous- and discrete-control environments, without any loss in runtime speed.
The use of parallel actors for data collection has been an effective technique used in reinforcement learning (RL) algorithms. The manner in… (voir plus) which data is collected in these algorithms, controlled via the number of parallel environments and the rollout length, induces a form of bias-variance trade-off; the number of training passes over the collected data, on the other hand, must strike a balance between sample efficiency and overfitting. We conduct an empirical analysis of these trade-offs on PPO, one of the most popular RL algorithms that uses parallel actors, and establish connections to network plasticity and, more generally, optimization stability. We examine its impact on network architectures, as well as the hyper-parameter sensitivity when scaling data. Our analyses indicate that larger dataset sizes can increase final performance across a variety of settings, and that scaling parallel environments is more effective than increasing rollout lengths. These findings highlight the critical role of data collection strategies in improving agent performance.
2025-10-06
Proceedings of the 42nd International Conference on Machine Learning (publié)
The use of parallel actors for data collection has been an effective technique used in reinforcement learning (RL) algorithms. The manner in… (voir plus) which data is collected in these algorithms, controlled via the number of parallel environments and the rollout length, induces a form of bias-variance trade-off; the number of training passes over the collected data, on the other hand, must strike a balance between sample efficiency and overfitting. We conduct an empirical analysis of these trade-offs on PPO, one of the most popular RL algorithms that uses parallel actors, and establish connections to network plasticity and, more generally, optimization stability. We examine its impact on network architectures, as well as the hyper-parameter sensitivity when scaling data. Our analyses indicate that larger dataset sizes can increase final performance across a variety of settings, and that scaling parallel environments is more effective than increasing rollout lengths. These findings highlight the critical role of data collection strategies in improving agent performance.
2025-10-06
Proceedings of the 42nd International Conference on Machine Learning (publié)