Portrait de Glen Berseth

Glen Berseth

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur agrégé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage par renforcement
Apprentissage profond

Biographie

Glen Berseth est professeur agrégé au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal, membre académique principal de Mila – Institut québécois d'intelligence artificielle, détenteur d’une chaire en IA Canada-CIFAR et codirecteur du Laboratoire de robotique et d’IA intégrative de Montréal (REAL). Il a été chercheur postdoctoral à Berkeley Artificial Intelligence Research (BAIR), où il a travaillé avec Sergey Levine. Ses recherches portent sur la résolution de problèmes de prise de décision séquentielle (planification) pour les systèmes d'apprentissage autonomes du monde réel (robots). Elles ont couvert les domaines de la collaboration humain-robot, du renforcement, ainsi que de l'apprentissage continu, multiagent et hiérarchique et du méta-apprentissage. Glen Berseth a fait paraître des articles dans les meilleures publications des domaines de la robotique, de l'apprentissage automatique et de l'animation informatique. Il donne également un cours sur l'apprentissage des robots à l'Université de Montréal et à Mila, couvrant les recherches les plus récentes sur les techniques d'apprentissage automatique pour la création de robots généralistes.

Étudiants actuels

Maîtrise recherche - UdeM
Maîtrise professionnelle - UdeM
Collaborateur·rice de recherche - Waterloo
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - UdeM
Maîtrise recherche - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Postdoctorat - UdeM
Co-superviseur⋅e :
Maîtrise professionnelle - UdeM
Stagiaire de recherche - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :

Publications

Robust and Versatile Bipedal Jumping Control through Reinforcement Learning
Zhongyu Li
Xue Bin Peng
Pieter Abbeel
Sergey Levine
Koushil Sreenath
Robust and Versatile Bipedal Jumping Control through Multi-Task Reinforcement Learning
Zhongyu Li
Xue Bin Peng
Pieter Abbeel
Sergey Levine
Koushil Sreenath
Towards Learning to Imitate from a Single Video Demonstration
Florian Golemo
Agents that can learn to imitate given video observation -- \emph{without direct access to state or action information} are more applicable … (voir plus)to learning in the natural world. However, formulating a reinforcement learning (RL) agent that facilitates this goal remains a significant challenge. We approach this challenge using contrastive training to learn a reward function comparing an agent's behaviour with a single demonstration. We use a Siamese recurrent neural network architecture to learn rewards in space and time between motion clips while training an RL policy to minimize this distance. Through experimentation, we also find that the inclusion of multi-task data and additional image encoding losses improve the temporal consistency of the learned rewards and, as a result, significantly improves policy learning. We demonstrate our approach on simulated humanoid, dog, and raptor agents in 2D and a quadruped and a humanoid in 3D. We show that our method outperforms current state-of-the-art techniques in these environments and can learn to imitate from a single video demonstration.
Hierarchical Reinforcement Learning for Precise Soccer Shooting Skills using a Quadrupedal Robot
Yandong Ji
Zhongyu Li
Yinan Sun
Xue Bin Peng
Sergey Levine
Koushil Sreenath
We address the problem of enabling quadrupedal robots to perform precise shooting skills in the real world using reinforcement learning. Dev… (voir plus)eloping algorithms to enable a legged robot to shoot a soccer ball to a given target is a challenging problem that combines robot motion control and planning into one task. To solve this problem, we need to consider the dynamics limitation and motion stability during the control of a dynamic legged robot. Moreover, we need to consider motion planning to shoot the hard-to-model deformable ball rolling on the ground with uncertain friction to a desired location. In this paper, we propose a hierarchical framework that leverages deep reinforcement learning to train (a) a robust motion control policy that can track arbitrary motions and (b) a planning policy to decide the desired kicking motion to shoot a soccer ball to a target. We deploy the proposed framework on an A1 quadrupedal robot and enable it to accurately shoot the ball to random targets in the real world.
ASHA: Assistive Teleoperation via Human-in-the-Loop Reinforcement Learning
Sean Chen
Jensen Gao
Siddharth Reddy
Anca Dragan
Sergey Levine
Building assistive interfaces for controlling robots through arbitrary, high-dimensional, noisy inputs (e.g., webcam images of eye gaze) can… (voir plus) be challenging, especially when it involves inferring the user's desired action in the absence of a natural ‘default’ interface. Reinforcement learning from online user feedback on the system's performance presents a natural solution to this problem, and enables the interface to adapt to individual users. However, this approach tends to require a large amount of human-in-the-loop training data, especially when feedback is sparse. We propose a hierarchical solution that learns efficiently from sparse user feedback: we use offline pre-training to acquire a latent embedding space of useful, high-level robot behaviors, which, in turn, enables the system to focus on using online user feedback to learn a mapping from user inputs to desired high-level behaviors. The key insight is that access to a pre-trained policy enables the system to learn more from sparse rewards than a naïve RL algorithm: using the pre-trained policy, the system can make use of successful task executions to relabel, in hindsight, what the user actually meant to do during unsuccessful executions. We evaluate our method primarily through a user study with 12 participants who perform tasks in three simulated robotic manipulation domains using a webcam and their eye gaze: flipping light switches, opening a shelf door to reach objects inside, and rotating a valve. The results show that our method successfully learns to map 128-dimensional gaze features to 7-dimensional joint torques from sparse rewards in under 10 minutes of online training, and seamlessly helps users who employ different gaze strategies, while adapting to distributional shift in webcam inputs, tasks, and environments
ASHA: Assistive Teleoperation via Human-in-the-Loop Reinforcement Learning
Sean Andrew Chen
Jensen Gao
Siddharth Reddy
Anca Dragan
Sergey Levine
Building assistive interfaces for controlling robots through arbitrary, high-dimensional, noisy inputs (e.g., webcam images of eye gaze) can… (voir plus) be challenging, especially when it involves inferring the user's desired action in the absence of a natural ‘default’ interface. Reinforcement learning from online user feedback on the system's performance presents a natural solution to this problem, and enables the interface to adapt to individual users. However, this approach tends to require a large amount of human-in-the-loop training data, especially when feedback is sparse. We propose a hierarchical solution that learns efficiently from sparse user feedback: we use offline pre-training to acquire a latent embedding space of useful, high-level robot behaviors, which, in turn, enables the system to focus on using online user feedback to learn a mapping from user inputs to desired high-level behaviors. The key insight is that access to a pre-trained policy enables the system to learn more from sparse rewards than a naïve RL algorithm: using the pre-trained policy, the system can make use of successful task executions to relabel, in hindsight, what the user actually meant to do during unsuccessful executions. We evaluate our method primarily through a user study with 12 participants who perform tasks in three simulated robotic manipulation domains using a webcam and their eye gaze: flipping light switches, opening a shelf door to reach objects inside, and rotating a valve. The results show that our method successfully learns to map 128-dimensional gaze features to 7-dimensional joint torques from sparse rewards in under 10 minutes of online training, and seamlessly helps users who employ different gaze strategies, while adapting to distributional shift in webcam inputs, tasks, and environments
Heterogeneous Crowd Simulation Using Parametric Reinforcement Learning
Kaidong Hu
Michael Brandon Haworth
Vladimir Pavlovic
Petros Faloutsos
Mubbasir. T. Kapadia
Agent-based synthetic crowd simulation affords the cost-effective large-scale simulation and animation of interacting digital humans. Model-… (voir plus)based approaches have successfully generated a plethora of simulators with a variety of foundations. However, prior approaches have been based on statically defined models predicated on simplifying assumptions, limited video-based datasets, or homogeneous policies. Recent works have applied reinforcement learning to learn policies for navigation. However, these approaches may learn static homogeneous rules, are typically limited in their generalization to trained scenarios, and limited in their usability in synthetic crowd domains. In this article, we present a multi-agent reinforcement learning-based approach that learns a parametric predictive collision avoidance and steering policy. We show that training over a parameter space produces a flexible model across crowd configurations. That is, our goal-conditioned approach learns a parametric policy that affords heterogeneous synthetic crowds. We propose a model-free approach without centralization of internal agent information, control signals, or agent communication. The model is extensively evaluated. The results show policy generalization across unseen scenarios, agent parameters, and out-of-distribution parameterizations. The learned model has comparable computational performance to traditional methods. Qualitatively the model produces both expected (laminar flow, shuffling, bottleneck) and unexpected (side-stepping) emergent qualitative behaviours, and quantitatively the approach is performant across measures of movement quality.
Heterogeneous Crowd Simulation Using Parametric Reinforcement Learning
Kaidong Hu
Brandon Haworth
Vladimir Pavlovic
Petros Faloutsos
Mubbasir Kapadia
Agent-based synthetic crowd simulation affords the cost-effective large-scale simulation and animation of interacting digital humans. Model-… (voir plus)based approaches have successfully generated a plethora of simulators with a variety of foundations. However, prior approaches have been based on statically defined models predicated on simplifying assumptions, limited video-based datasets, or homogeneous policies. Recent works have applied reinforcement learning to learn policies for navigation. However, these approaches may learn static homogeneous rules, are typically limited in their generalization to trained scenarios, and limited in their usability in synthetic crowd domains. In this article, we present a multi-agent reinforcement learning-based approach that learns a parametric predictive collision avoidance and steering policy. We show that training over a parameter space produces a flexible model across crowd configurations. That is, our goal-conditioned approach learns a parametric policy that affords heterogeneous synthetic crowds. We propose a model-free approach without centralization of internal agent information, control signals, or agent communication. The model is extensively evaluated. The results show policy generalization across unseen scenarios, agent parameters, and out-of-distribution parameterizations. The learned model has comparable computational performance to traditional methods. Qualitatively the model produces both expected (laminar flow, shuffling, bottleneck) and unexpected (side-stepping) emergent qualitative behaviours, and quantitatively the approach is performant across measures of movement quality.