Portrait de Danilo Bzdok

Danilo Bzdok

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur agrégé, McGill University, Département de génie biomédicale
Sujets de recherche
Apprentissage profond
Biologie computationnelle
Grands modèles de langage (LLM)
Traitement du langage naturel

Biographie

Danilo Bzdok est informaticien et médecin de formation. Il possède une double formation unique en neurosciences systémiques et en algorithmes d'apprentissage automatique. Après une formation à l'Université d'Aix-la-Chapelle (RWTH) (Allemagne), à l'Université de Lausanne (Suisse) et à la Harvard Medical School (États-Unis), il a obtenu un doctorat en neurosciences du Centre de recherche de Jülich (Allemagne) et un doctorat en informatique dans le domaine des statistiques d'apprentissage automatique à l'INRIA Saclay et à NeuroSpin (Paris, France). Il est actuellement professeur agrégé à la Faculté de médecine de l'Université McGill et titulaire d’une chaire en IA Canada-CIFAR à Mila – Institut québécois d'intelligence artificielle. Son activité de recherche interdisciplinaire est centrée sur la réduction des lacunes dans la connaissance des bases cérébrales des types de pensée qui définissent l'être humain, afin de découvrir les principes clés de conception computationnelle qui sous-tendent l'intelligence humaine.

Étudiants actuels

Maîtrise recherche - McGill
Postdoctorat - McGill
Doctorat - McGill
Doctorat - McGill
Doctorat - McGill
Doctorat - McGill
Doctorat - McGill
Maîtrise recherche - McGill
Visiteur de recherche indépendant - McGill
Doctorat - McGill
Doctorat - McGill
Doctorat - McGill
Doctorat - McGill

Publications

Loneliness is linked to specific subregional alterations in hippocampus-default network covariation
Chris Zajner
Nathan Spreng
Educating the future generation of researchers: A cross-disciplinary survey of trends in analysis methods
Taylor Bolt
Jason S. Nomi
Lucina Q. Uddin
Human brain anatomy reflects separable genetic and environmental components of socioeconomic status
H. Kweon
Gökhan Aydogan
Alain Dagher
C. Ruff
Gideon Nave
Martha J Farah
Philipp Koellinger
Recent studies report that socioeconomic status (SES) correlates with brain structure. Yet, such findings are variable and little is known a… (voir plus)bout underlying causes. We present a well-powered voxel-based analysis of grey matter volume (GMV) across levels of SES, finding many small SES effects widely distributed across the brain, including cortical, subcortical and cerebellar regions. We also construct a polygenic index of SES to control for the additive effects of common genetic variation related to SES, which attenuates observed SES-GMV relations, to different degrees in different areas. Remaining variance, which may be attributable to environmental factors, is substantially accounted for by body mass index, a marker for lifestyle related to SES. In sum, SES affects multiple brain regions through measurable genetic and environmental effects. One-sentence Summary Socioeconomic status is linked with brain anatomy through a varying balance of genetic and environmental influences.
Trips and neurotransmitters: Discovering principled patterns across 6850 hallucinogenic experiences
Galen Ballentine
Samuel Freesun Friedman
The default mode network in cognition: a topographical perspective
Jonathan Smallwood
Boris C Bernhardt
Robert Leech
Elizabeth Jefferies
Daniel S. Margulies
Large-Scale Intrinsic Functional Brain Organization Emerges from Three Canonical Spatiotemporal Patterns
Taylor Bolt
Jason S. Nomi
Catie Chang
B.T. Yeo
Lucina Q. Uddin
Shella Keilholz
A parsimonious description of global functional brain organization in three spatiotemporal patterns
Taylor Bolt
Jason S. Nomi
Jorge A. Salas
Catie Chang
B. T. Thomas Yeo
Lucina Q. Uddin
S. Keilholz
The Cost of Untracked Diversity in Brain-Imaging Prediction
Oualid Benkarim
Casey Paquola
Bo-yong Park
Valeria Kebets
Seok-Jun Hong
Reinder Vos de Wael
Shaoshi Zhang
B.T. Thomas Yeo
Michael Eickenberg
Tian Ge
Jean-Baptiste Poline
Boris C Bernhardt
Generative lesion pattern decomposition of cognitive impairment after stroke
Anna K. Bonkhoff
Jae‐Sung Lim
Hee-Joon Bae
Nick A. Weaver
Hugo J Kuijf
J. Matthijs Biesbroek
Natalia S Rost
Cognitive impairment is a frequent and disabling sequela of stroke. There is however incomplete understanding of how lesion topographies in … (voir plus)the left and right cerebral hemisphere brain interact to cause distinct cognitive deficits. We integrated machine learning and Bayesian hierarchical modeling to enable hemisphere-aware analysis of 1080 subacute ischemic stroke patients with deep profiling ∼3 months after stroke. We show relevance of the left hemisphere in the prediction of language and memory assessments, while global cognitive impairments were equally well predicted by lesion topographies from both sides. Damage to the hippocampal and occipital regions on the left were particularly informative about lost naming and memory function. Global cognitive impairment was predominantly linked to lesioned tissue in supramarginal and angular gyrus, the postcentral gyrus as well as the lateral occipital and opercular cortices of the left hemisphere. Hence, our analysis strategy uncovered that lesion patterns with unique hemispheric distributions are characteristic of how cognitive capacity is lost due to ischemic brain tissue damage.
Publisher Correction: The default network of the human brain is associated with perceived social isolation
R. Nathan Spreng
Emile Dimas
Laetitia Mwilambwe-Tshilobo
Alain Dagher
Philipp Koellinger
Gideon Nave
Anthony Ong
Julius M Kernbach
Thomas V. Wiecki
Tian Ge
Avram J. Holmes
B.T. Thomas Yeo
Gary R. Turner
Robin I. M. Dunbar
Variability in Brain Structure and Function Reflects Lack of Peer Support
Matthias Schurz
Lucina Q. Uddin
Philipp Kanske
Claus Lamm
Jérôme Sallet
Boris C Bernhardt
Rogier B Mars
How does hemispheric specialization contribute to human-defining cognition?
Gesa Hartwigsen