Portrait de Aaron Courville

Aaron Courville

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur agrégé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Communication efficace dans un jeu de somme générale
Modèles génératifs
Systèmes multi-agents
Théorie des jeux
Traitement du langage naturel
Vision par ordinateur

Biographie

Aaron Courville est professeur au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal et Directeur scientifique à IVADO. Il a obtenu son doctorat au Robotics Institute de l'Université Carnegie Mellon.

Il est l'un des premiers contributeurs à l'apprentissage profond, membre fondateur de Mila – Institut québécois d’intelligence artificielle. Avec Ian Goodfellow et Yoshua Bengio, il a coécrit le manuel de référence sur l'apprentissage profond.

Ses recherches actuelles portent sur le développement de modèles et de méthodes d'apprentissage profond. Il s'intéresse particulièrement à l'apprentissage par renforcement, à l'apprentissage par renforcement multi-agents, aux modèles génératifs profonds et au raisonnement.

Aaron Courville est titulaire d'une chaire en IA Canada-CIFAR et d'une Chaire de recherche du Canada (CRC) en généralisation systématique. Ses recherches ont été soutenues en partie par Microsoft Research, Samsung, Hitachi, Meta, Sony (bourse de recherche) et Google (bourse de recherche ciblée).

Étudiants actuels

Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - Université de Montréal
Maîtrise recherche - UdeM
Maîtrise professionnelle - UdeM
Doctorat - UdeM
Doctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :

Publications

Ordered Memory
Yikang Shen
Shawn Tan
Seyedarian Hosseini
Zhouhan Lin
Ordered Memory
Yikang Shen
Shawn Tan
Seyedarian Hosseini
Zhouhan Lin
Icentia11K: An Unsupervised Representation Learning Dataset for Arrhythmia Subtype Discovery
Shawn Tan
Guillaume Androz
Ahmad Chamseddine
Pierre Fecteau
Joseph Paul Cohen
We release the largest public ECG dataset of continuous raw signals for representation learning containing 11 thousand patients and 2 billio… (voir plus)n labelled beats. Our goal is to enable semi-supervised ECG models to be made as well as to discover unknown subtypes of arrhythmia and anomalous ECG signal events. To this end, we propose an unsupervised representation learning task, evaluated in a semi-supervised fashion. We provide a set of baselines for different feature extractors that can be built upon. Additionally, we perform qualitative evaluations on results from PCA embeddings, where we identify some clustering of known subtypes indicating the potential for representation learning in arrhythmia sub-type discovery.
Benchmarking Bonus-Based Exploration Methods on the Arcade Learning Environment
Adrien Ali Taiga
William Fedus
Marlos C. Machado
This paper provides an empirical evaluation of recently developed exploration algorithms within the Arcade Learning Environment (ALE). We st… (voir plus)udy the use of different reward bonuses that incentives exploration in reinforcement learning. We do so by fixing the learning algorithm used and focusing only on the impact of the different exploration bonuses in the agent's performance. We use Rainbow, the state-of-the-art algorithm for value-based agents, and focus on some of the bonuses proposed in the last few years. We consider the impact these algorithms have on performance within the popular game Montezuma's Revenge which has gathered a lot of interest from the exploration community, across the the set of seven games identified by Bellemare et al. (2016) as challenging for exploration, and easier games where exploration is not an issue. We find that, in our setting, recently developed bonuses do not provide significantly improved performance on Montezuma's Revenge or hard exploration games. We also find that existing bonus-based methods may negatively impact performance on games in which exploration is not an issue and may even perform worse than
Adversarial Computation of Optimal Transport Maps
Jacob Leygonie
Jennifer She*
Amjad Almahairi
Sai Rajeswar
Computing optimal transport maps between high-dimensional and continuous distributions is a challenging problem in optimal transport (OT). G… (voir plus)enerative adversarial networks (GANs) are powerful generative models which have been successfully applied to learn maps across high-dimensional domains. However, little is known about the nature of the map learned with a GAN objective. To address this problem, we propose a generative adversarial model in which the discriminator's objective is the
Investigating Biases in Textual Entailment Datasets
Shawn Tan
Yikang Shen
Chin-Wei Huang
The ability to understand logical relationships between sentences is an important task in language understanding. To aid in progress for thi… (voir plus)s task, researchers have collected datasets for machine learning and evaluation of current systems. However, like in the crowdsourced Visual Question Answering (VQA) task, some biases in the data inevitably occur. In our experiments, we find that performing classification on just the hypotheses on the SNLI dataset yields an accuracy of 64%. We analyze the bias extent in the SNLI and the MultiNLI dataset, discuss its implication, and propose a simple method to reduce the biases in the datasets.
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Alexandre Lacoste
Recent advances in variational inference enable the modelling of highly structured joint distributions, but are limited in their capacity to… (voir plus) scale to the high-dimensional setting of stochastic neural networks. This limitation motivates a need for scalable parameterizations of the noise generation process, in a manner that adequately captures the dependencies among the various parameters. In this work, we address this need and present the Kronecker Flow, a generalization of the Kronecker product to invertible mappings designed for stochastic neural networks. We apply our method to variational Bayesian neural networks on predictive tasks, PAC-Bayes generalization bound estimation, and approximate Thompson sampling in contextual bandits. In all setups, our methods prove to be competitive with existing methods and better than the baselines.
Note on the bias and variance of variational inference
Chin-Wei Huang
In this note, we study the relationship between the variational gap and the variance of the (log) likelihood ratio. We show that the gap can… (voir plus) be upper bounded by some form of dispersion measure of the likelihood ratio, which suggests the bias of variational inference can be reduced by making the distribution of the likelihood ratio more concentrated, such as via averaging and variance reduction.
Representation Mixing for TTS Synthesis
Kyle Kastner
Joao Felipe Santos
Recent character and phoneme-based parametric TTS systems using deep learning have shown strong performance in natural speech generation. Ho… (voir plus)wever, the choice between character or phoneme input can create serious limitations for practical deployment, as direct control of pronunciation is crucial in certain cases. We demonstrate a simple method for combining multiple types of linguistic information in a single encoder, named representation mixing, enabling flexible choice between character, phoneme, or mixed representations during inference. Experiments and user studies on a public audiobook corpus show the efficacy of our approach.
Brief Report: Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks
Yikeng Shen
Shawn Tan
Maximum Entropy Generators for Energy-Based Models
Rithesh Kumar
Anirudh Goyal
Maximum likelihood estimation of energy-based models is a challenging problem due to the intractability of the log-likelihood gradient. In t… (voir plus)his work, we propose learning both the energy function and an amortized approximate sampling mechanism using a neural generator network, which provides an efficient approximation of the log-likelihood gradient. The resulting objective requires maximizing entropy of the generated samples, which we perform using recently proposed nonparametric mutual information estimators. Finally, to stabilize the resulting adversarial game, we use a zero-centered gradient penalty derived as a necessary condition from the score matching literature. The proposed technique can generate sharp images with Inception and FID scores competitive with recent GAN techniques, does not suffer from mode collapse, and is competitive with state-of-the-art anomaly detection techniques.
Hierarchical Importance Weighted Autoencoders
Chin-Wei Huang
Kris Sankaran
Eeshan Dhekane
Alexandre Lacoste
Importance weighted variational inference (Burda et al., 2015) uses multiple i.i.d. samples to have a tighter variational lower bound. We be… (voir plus)lieve a joint proposal has the potential of reducing the number of redundant samples, and introduce a hierarchical structure to induce correlation. The hope is that the proposals would coordinate to make up for the error made by one another to reduce the variance of the importance estimator. Theoretically, we analyze the condition under which convergence of the estimator variance can be connected to convergence of the lower bound. Empirically, we confirm that maximization of the lower bound does implicitly minimize variance. Further analysis shows that this is a result of negative correlation induced by the proposed hierarchical meta sampling scheme, and performance of inference also improves when the number of samples increases.