Portrait of Aaron Courville

Aaron Courville

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Computer Vision
Deep Learning
Efficient Communication in General Sum Game
Game Theory
Generative Models
Multi-Agent Systems
Natural Language Processing
Reinforcement Learning
Representation Learning

Biography

Aaron Courville is a professor in the Department of Computer Science and Operations Research (DIRO) at Université de Montréal and Scientific Director of IVADO. He has a PhD from the Robotics Institute, Carnegie Mellon University.

Courville was an early contributor to deep learning: he is a founding member of Mila – Quebec Artificial Intelligence Institute. Together with Ian Goodfellow and Yoshua Bengio, he co-wrote the seminal textbook on deep learning.

His current research focuses on the development of deep learning models and methods. He is particularly interested in reinforcement learning, multi-agent reinforcement learning, deep generative models and reasoning.

Courville holds a Canada CIFAR AI Chair and a Canada Research Chair in Systematic Generalization. His research has been supported by Microsoft Research, Samsung, Hitachi, Meta, Sony (Research Award) and Google (Focused Research Award).

Current Students

PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Master's Research - Université de Montréal
Master's Research - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Professional Master's - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Master's Research - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :

Publications

What Do Compressed Deep Neural Networks Forget
Sara Hooker
Gregory Clark
Yann Dauphin
Andrea Frome
Deep neural network pruning and quantization techniques have demonstrated it is possible to achieve high levels of compression with surprisi… (see more)ngly little degradation to test set accuracy. However, this measure of performance conceals significant differences in how different classes and images are impacted by model compression techniques. We find that models with radically different numbers of weights have comparable top-line performance metrics but diverge considerably in behavior on a narrow subset of the dataset. This small subset of data points, which we term Pruning Identified Exemplars (PIEs) are systematically more impacted by the introduction of sparsity. Compression disproportionately impacts model performance on the underrepresented long-tail of the data distribution. PIEs over-index on atypical or noisy images that are far more challenging for both humans and algorithms to classify. Our work provides intuition into the role of capacity in deep neural networks and the trade-offs incurred by compression. An understanding of this disparate impact is critical given the widespread deployment of compressed models in the wild.
Deep Generative Modeling of LiDAR Data
Lucas Caccia
Herke van Hoof
Building models capable of generating structured output is a key challenge for AI and robotics. While generative models have been explored o… (see more)n many types of data, little work has been done on synthesizing lidar scans, which play a key role in robot mapping and localization. In this work, we show that one can adapt deep generative models for this task by unravelling lidar scans into a 2D point map. Our approach can generate high quality samples, while simultaneously learning a meaningful latent representation of the data. We demonstrate significant improvements against state-of-the-art point cloud generation methods. Furthermore, we propose a novel data representation that augments the 2D signal with absolute positional information. We show that this helps robustness to noisy and imputed input; the learned model can recover the underlying lidar scan from seemingly uninformative data.
Batch Weight for Domain Adaptation With Mass Shift
Unsupervised domain transfer is the task of transferring or translating samples from a source distribution to a different target distributio… (see more)n. Current solutions unsupervised domain transfer often operate on data on which the modes of the distribution are well-matched, for instance have the same frequencies of classes between source and target distributions. However, these models do not perform well when the modes are not well-matched, as would be the case when samples are drawn independently from two different, but related, domains. This mode imbalance is problematic as generative adversarial networks (GANs), a successful approach in this setting, are sensitive to mode frequency, which results in a mismatch of semantics between source samples and generated samples of the target distribution. We propose a principled method of re-weighting training samples to correct for such mass shift between the transferred distributions, which we call batch weight. We also provide rigorous probabilistic setting for domain transfer and new simplified objective for training transfer networks, an alternative to complex, multi-component loss functions used in the current state-of-the art image-to-image translation models. The new objective stems from the discrimination of joint distributions and enforces cycle-consistency in an abstract, high-level, rather than pixel-wise, sense. Lastly, we experimentally show the effectiveness of the proposed methods in several image-to-image translation tasks.
Improved Conditional VRNNs for Video Prediction
Lluis Castrejon
Nicolas Ballas
Predicting future frames for a video sequence is a challenging generative modeling task. Promising approaches include probabilistic latent v… (see more)ariable models such as the Variational Auto-Encoder. While VAEs can handle uncertainty and model multiple possible future outcomes, they have a tendency to produce blurry predictions. In this work we argue that this is a sign of underfitting. To address this issue, we propose to increase the expressiveness of the latent distributions and to use higher capacity likelihood models. Our approach relies on a hierarchy of latent variables, which defines a family of flexible prior and posterior distributions in order to better model the probability of future sequences. We validate our proposal through a series of ablation experiments and compare our approach to current state-of-the-art latent variable models. Our method performs favorably under several metrics in three different datasets.
Ordered Memory
Yikang Shen
Shawn Tan
Seyedarian Hosseini
Zhouhan Lin
Ordered Memory
Yikang Shen
Shawn Tan
Seyedarian Hosseini
Zhouhan Lin
Icentia11K: An Unsupervised Representation Learning Dataset for Arrhythmia Subtype Discovery
Shawn Tan
Guillaume Androz
Ahmad Chamseddine
Pierre Fecteau
Joseph Paul Cohen
We release the largest public ECG dataset of continuous raw signals for representation learning containing 11 thousand patients and 2 billio… (see more)n labelled beats. Our goal is to enable semi-supervised ECG models to be made as well as to discover unknown subtypes of arrhythmia and anomalous ECG signal events. To this end, we propose an unsupervised representation learning task, evaluated in a semi-supervised fashion. We provide a set of baselines for different feature extractors that can be built upon. Additionally, we perform qualitative evaluations on results from PCA embeddings, where we identify some clustering of known subtypes indicating the potential for representation learning in arrhythmia sub-type discovery.
Benchmarking Bonus-Based Exploration Methods on the Arcade Learning Environment
Adrien Ali Taiga
William Fedus
Marlos C. Machado
This paper provides an empirical evaluation of recently developed exploration algorithms within the Arcade Learning Environment (ALE). We st… (see more)udy the use of different reward bonuses that incentives exploration in reinforcement learning. We do so by fixing the learning algorithm used and focusing only on the impact of the different exploration bonuses in the agent's performance. We use Rainbow, the state-of-the-art algorithm for value-based agents, and focus on some of the bonuses proposed in the last few years. We consider the impact these algorithms have on performance within the popular game Montezuma's Revenge which has gathered a lot of interest from the exploration community, across the the set of seven games identified by Bellemare et al. (2016) as challenging for exploration, and easier games where exploration is not an issue. We find that, in our setting, recently developed bonuses do not provide significantly improved performance on Montezuma's Revenge or hard exploration games. We also find that existing bonus-based methods may negatively impact performance on games in which exploration is not an issue and may even perform worse than
Adversarial Computation of Optimal Transport Maps
Jacob Leygonie
Jennifer She*
Amjad Almahairi
Sai Rajeswar
Computing optimal transport maps between high-dimensional and continuous distributions is a challenging problem in optimal transport (OT). G… (see more)enerative adversarial networks (GANs) are powerful generative models which have been successfully applied to learn maps across high-dimensional domains. However, little is known about the nature of the map learned with a GAN objective. To address this problem, we propose a generative adversarial model in which the discriminator's objective is the
Investigating Biases in Textual Entailment Datasets
Shawn Tan
Yikang Shen
Chin-Wei Huang
The ability to understand logical relationships between sentences is an important task in language understanding. To aid in progress for thi… (see more)s task, researchers have collected datasets for machine learning and evaluation of current systems. However, like in the crowdsourced Visual Question Answering (VQA) task, some biases in the data inevitably occur. In our experiments, we find that performing classification on just the hypotheses on the SNLI dataset yields an accuracy of 64%. We analyze the bias extent in the SNLI and the MultiNLI dataset, discuss its implication, and propose a simple method to reduce the biases in the datasets.
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Alexandre Lacoste
Recent advances in variational inference enable the modelling of highly structured joint distributions, but are limited in their capacity to… (see more) scale to the high-dimensional setting of stochastic neural networks. This limitation motivates a need for scalable parameterizations of the noise generation process, in a manner that adequately captures the dependencies among the various parameters. In this work, we address this need and present the Kronecker Flow, a generalization of the Kronecker product to invertible mappings designed for stochastic neural networks. We apply our method to variational Bayesian neural networks on predictive tasks, PAC-Bayes generalization bound estimation, and approximate Thompson sampling in contextual bandits. In all setups, our methods prove to be competitive with existing methods and better than the baselines.
Note on the bias and variance of variational inference
Chin-Wei Huang
In this note, we study the relationship between the variational gap and the variance of the (log) likelihood ratio. We show that the gap can… (see more) be upper bounded by some form of dispersion measure of the likelihood ratio, which suggests the bias of variational inference can be reduced by making the distribution of the likelihood ratio more concentrated, such as via averaging and variance reduction.