Portrait of Yoshua Bengio

Yoshua Bengio

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research Department
Founder and Scientific Advisor, Leadership Team
Research Topics
Causality
Computational Neuroscience
Deep Learning
Generative Models
Graph Neural Networks
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Natural Language Processing
Probabilistic Models
Reasoning
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Biography

*For media requests, please write to medias@mila.quebec.

For more information please contact Marie-Josée Beauchamp, Administrative Assistant at marie-josee.beauchamp@mila.quebec.

Yoshua Bengio is recognized worldwide as a leading expert in AI. He is most known for his pioneering work in deep learning, which earned him the 2018 A.M. Turing Award, “the Nobel Prize of computing,” with Geoffrey Hinton and Yann LeCun.

Bengio is a full professor at Université de Montréal, and the founder and scientific advisor of Mila – Quebec Artificial Intelligence Institute. He is also a senior fellow at CIFAR and co-directs its Learning in Machines & Brains program, serves as special advisor and founding scientific director of IVADO, and holds a Canada CIFAR AI Chair.

In 2019, Bengio was awarded the prestigious Killam Prize and in 2022, he was the most cited computer scientist in the world by h-index. He is a Fellow of the Royal Society of London, Fellow of the Royal Society of Canada, Knight of the Legion of Honor of France and Officer of the Order of Canada. In 2023, he was appointed to the UN’s Scientific Advisory Board for Independent Advice on Breakthroughs in Science and Technology.

Concerned about the social impact of AI, Bengio helped draft the Montréal Declaration for the Responsible Development of Artificial Intelligence and continues to raise awareness about the importance of mitigating the potentially catastrophic risks associated with future AI systems.

Current Students

Collaborating Alumni - McGill University
Collaborating Alumni - Université de Montréal
Collaborating researcher - Cambridge University
Principal supervisor :
PhD - Université de Montréal
Independent visiting researcher - KAIST
Independent visiting researcher
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Collaborating researcher - N/A
Principal supervisor :
PhD - Université de Montréal
Collaborating researcher - KAIST
PhD - Université de Montréal
PhD - Université de Montréal
Research Intern - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Research Intern - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Collaborating Alumni - Université de Montréal
Principal supervisor :
Collaborating Alumni
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Principal supervisor :
Independent visiting researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Ying Wu Coll of Computing
PhD - University of Waterloo
Principal supervisor :
Collaborating Alumni - Max-Planck-Institute for Intelligent Systems
Research Intern - Université de Montréal
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - Université de Montréal
Postdoctorate - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Master's Research - Université de Montréal
Collaborating Alumni - Université de Montréal
Master's Research - Université de Montréal
Postdoctorate
Independent visiting researcher - Technical University of Munich
Postdoctorate - Polytechnique Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
Postdoctorate - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Collaborating researcher - Université de Montréal
Collaborating researcher
Research Intern - Université de Montréal
PhD - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :

Publications

On diffusion models for amortized inference: Benchmarking and improving stochastic control and sampling
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Nikolay Malkin
We study the problem of training diffusion models to sample from a distribution with a given unnormalized density or energy function. We ben… (see more)chmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods (continuous generative flow networks). Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work. We also propose a novel exploration strategy for off-policy methods, based on local search in the target space with the use of a replay buffer, and show that it improves the quality of samples on a variety of target distributions. Our code for the sampling methods and benchmarks studied is made public at https://github.com/GFNOrg/gfn-diffusion as a base for future work on diffusion models for amortized inference.
Foundational Challenges in Assuring Alignment and Safety of Large Language Models
Usman Anwar
Abulhair Saparov
Javier Rando
Daniel Paleka
Miles Turpin
Peter Hase
Ekdeep Singh Lubana
Erik Jenner
Stephen Casper
Oliver Sourbut
Benjamin L. Edelman
Zhaowei Zhang
Mario Günther
Anton Korinek
Jose Hernandez-Orallo
Lewis Hammond
Eric J Bigelow
Alexander Pan
Lauro Langosco
Tomasz Korbak … (see 22 more)
Heidi Chenyu Zhang
Ruiqi Zhong
Sean O hEigeartaigh
Gabriel Recchia
Giulio Corsi
Alan Chan
Markus Anderljung
Lilian Edwards
Aleksandar Petrov
Danqi Chen
Christian Schroeder de Witt
Sumeet Ramesh Motwani
Samuel Albanie
Jakob Nicolaus Foerster
Philip Torr
Florian Tramèr
He He
Atoosa Kasirzadeh
Yejin Choi
Local Search GFlowNets.
Minsu Kim
Taeyoung Yun
Dinghuai Zhang
Sungsoo Ahn
Jinkyoo Park
PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated Catalyst Design
Alexandre AGM Duval
Victor Schmidt
Santiago Miret
Alex Hernandez-Garcia
Simulation-Free Schrödinger Bridges via Score and Flow Matching
Alexander Tong
Nikolay Malkin
Kilian FATRAS
Lazar Atanackovic
Yanlei Zhang
Guillaume Huguet
We present simulation-free score and flow matching ([SF]…
A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems
Alexandre AGM Duval
Simon V. Mathis
Chaitanya K. Joshi
Victor Schmidt
Santiago Miret
Fragkiskos D. Malliaros
Taco Cohen
Pietro Lio’
Michael M. Bronstein
Recent advances in computational modelling of atomic systems, spanning molecules, proteins, and materials, represent them as geometric graph… (see more)s with atoms embedded as nodes in 3D Euclidean space. In these graphs, the geometric attributes transform according to the inherent physical symmetries of 3D atomic systems, including rotations and translations in Euclidean space, as well as node permutations. In recent years, Geometric Graph Neural Networks have emerged as the preferred machine learning architecture powering applications ranging from protein structure prediction to molecular simulations and material generation. Their specificity lies in the inductive biases they leverage - such as physical symmetries and chemical properties - to learn informative representations of these geometric graphs. In this opinionated paper, we provide a comprehensive and self-contained overview of the field of Geometric GNNs for 3D atomic systems. We cover fundamental background material and introduce a pedagogical taxonomy of Geometric GNN architectures: (1) invariant networks, (2) equivariant networks in Cartesian basis, (3) equivariant networks in spherical basis, and (4) unconstrained networks. Additionally, we outline key datasets and application areas and suggest future research directions. The objective of this work is to present a structured perspective on the field, making it accessible to newcomers and aiding practitioners in gaining an intuition for its mathematical abstractions.
A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems
Alexandre AGM Duval
Simon V. Mathis
Chaitanya K. Joshi
Victor Schmidt
Santiago Miret
Fragkiskos D. Malliaros
Taco Cohen
Pietro Lio’
Michael M. Bronstein
Recent advances in computational modelling of atomic systems, spanning molecules, proteins, and materials, represent them as geometric graph… (see more)s with atoms embedded as nodes in 3D Euclidean space. In these graphs, the geometric attributes transform according to the inherent physical symmetries of 3D atomic systems, including rotations and translations in Euclidean space, as well as node permutations. In recent years, Geometric Graph Neural Networks have emerged as the preferred machine learning architecture powering applications ranging from protein structure prediction to molecular simulations and material generation. Their specificity lies in the inductive biases they leverage - such as physical symmetries and chemical properties - to learn informative representations of these geometric graphs. In this opinionated paper, we provide a comprehensive and self-contained overview of the field of Geometric GNNs for 3D atomic systems. We cover fundamental background material and introduce a pedagogical taxonomy of Geometric GNN architectures: (1) invariant networks, (2) equivariant networks in Cartesian basis, (3) equivariant networks in spherical basis, and (4) unconstrained networks. Additionally, we outline key datasets and application areas and suggest future research directions. The objective of this work is to present a structured perspective on the field, making it accessible to newcomers and aiding practitioners in gaining an intuition for its mathematical abstractions.
A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems
Alexandre AGM Duval
Simon V. Mathis
Chaitanya K. Joshi
Victor Schmidt
Santiago Miret
Fragkiskos D. Malliaros
Taco Cohen
Pietro Lio’
Michael M. Bronstein
Recent advances in computational modelling of atomic systems, spanning molecules, proteins, and materials, represent them as geometric graph… (see more)s with atoms embedded as nodes in 3D Euclidean space. In these graphs, the geometric attributes transform according to the inherent physical symmetries of 3D atomic systems, including rotations and translations in Euclidean space, as well as node permutations. In recent years, Geometric Graph Neural Networks have emerged as the preferred machine learning architecture powering applications ranging from protein structure prediction to molecular simulations and material generation. Their specificity lies in the inductive biases they leverage - such as physical symmetries and chemical properties - to learn informative representations of these geometric graphs. In this opinionated paper, we provide a comprehensive and self-contained overview of the field of Geometric GNNs for 3D atomic systems. We cover fundamental background material and introduce a pedagogical taxonomy of Geometric GNN architectures: (1) invariant networks, (2) equivariant networks in Cartesian basis, (3) equivariant networks in spherical basis, and (4) unconstrained networks. Additionally, we outline key datasets and application areas and suggest future research directions. The objective of this work is to present a structured perspective on the field, making it accessible to newcomers and aiding practitioners in gaining an intuition for its mathematical abstractions.
A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems
Alexandre AGM Duval
Simon V. Mathis
Chaitanya K. Joshi
Victor Schmidt
Santiago Miret
Fragkiskos D. Malliaros
Taco Cohen
Pietro Lio’
Michael M. Bronstein
Improving Gradient-guided Nested Sampling for Posterior Inference
Pablo Lemos
Will Handley
Nikolay Malkin
We present a performant, general-purpose gradient-guided nested sampling algorithm, …
Unlearning via Sparse Representations
Vedant Shah
Frederik Träuble
Ashish Malik
Michael Curtis Mozer
Sanjeev Arora
Anirudh Goyal
Unlearning via Sparse Representations
Vedant Shah
Frederik Träuble
Ashish Malik
Michael Curtis Mozer
Sanjeev Arora
Anirudh Goyal
Machine \emph{unlearning}, which involves erasing knowledge about a \emph{forget set} from a trained model, can prove to be costly and infea… (see more)sible by existing techniques. We propose a nearly compute-free zero-shot unlearning technique based on a discrete representational bottleneck. We show that the proposed technique efficiently unlearns the forget set and incurs negligible damage to the model's performance on the rest of the data set. We evaluate the proposed technique on the problem of \textit{class unlearning} using three datasets: CIFAR-10, CIFAR-100, and LACUNA-100. We compare the proposed technique to SCRUB, a state-of-the-art approach which uses knowledge distillation for unlearning. Across all three datasets, the proposed technique performs as well as, if not better than SCRUB while incurring almost no computational cost.