Portrait of Yoshua Bengio

Yoshua Bengio

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research Department
Founder and Scientific Advisor, Leadership Team
Research Topics
Causality
Computational Neuroscience
Deep Learning
Generative Models
Graph Neural Networks
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Natural Language Processing
Probabilistic Models
Reasoning
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Biography

*For media requests, please write to medias@mila.quebec.

For more information please contact Marie-Josée Beauchamp, Administrative Assistant at marie-josee.beauchamp@mila.quebec.

Yoshua Bengio is recognized worldwide as a leading expert in AI. He is most known for his pioneering work in deep learning, which earned him the 2018 A.M. Turing Award, “the Nobel Prize of computing,” with Geoffrey Hinton and Yann LeCun.

Bengio is a full professor at Université de Montréal, and the founder and scientific advisor of Mila – Quebec Artificial Intelligence Institute. He is also a senior fellow at CIFAR and co-directs its Learning in Machines & Brains program, serves as special advisor and founding scientific director of IVADO, and holds a Canada CIFAR AI Chair.

In 2019, Bengio was awarded the prestigious Killam Prize and in 2022, he was the most cited computer scientist in the world by h-index. He is a Fellow of the Royal Society of London, Fellow of the Royal Society of Canada, Knight of the Legion of Honor of France and Officer of the Order of Canada. In 2023, he was appointed to the UN’s Scientific Advisory Board for Independent Advice on Breakthroughs in Science and Technology.

Concerned about the social impact of AI, Bengio helped draft the Montréal Declaration for the Responsible Development of Artificial Intelligence and continues to raise awareness about the importance of mitigating the potentially catastrophic risks associated with future AI systems.

Current Students

Collaborating Alumni - McGill University
Collaborating Alumni - Université de Montréal
Collaborating researcher - Cambridge University
Principal supervisor :
PhD - Université de Montréal
Collaborating Alumni - Université du Québec à Rimouski
Independent visiting researcher
Co-supervisor :
PhD - Université de Montréal
Collaborating Alumni - UQAR
Collaborating researcher - N/A
Principal supervisor :
PhD - Université de Montréal
Collaborating researcher - KAIST
PhD - Université de Montréal
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Research Intern - Université de Montréal
Research Intern - Université de Montréal
PhD - Université de Montréal
Master's Research - Université de Montréal
Co-supervisor :
Collaborating Alumni - Université de Montréal
Research Intern - Université de Montréal
Collaborating researcher - Université de Montréal
Collaborating Alumni - Université de Montréal
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Collaborating Alumni
Collaborating Alumni - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Principal supervisor :
Independent visiting researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Ying Wu Coll of Computing
PhD - University of Waterloo
Principal supervisor :
Collaborating Alumni - Max-Planck-Institute for Intelligent Systems
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - Université de Montréal
Postdoctorate - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Master's Research - Université de Montréal
Collaborating Alumni - Université de Montréal
Research Intern - Université de Montréal
Master's Research - Université de Montréal
Postdoctorate
Independent visiting researcher - Technical University of Munich
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Principal supervisor :
Postdoctorate - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Collaborating Alumni - Université de Montréal
Collaborating researcher
Collaborating researcher - KAIST
PhD - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :

Publications

Quaternion Recurrent Neural Networks
Titouan Parcollet
Mohamed Morchid
Georges Linarès
Chiheb Trabelsi
Renato De Mori
Recurrent neural networks (RNNs) are powerful architectures to model sequential data, due to their capability to learn short and long-term d… (see more)ependencies between the basic elements of a sequence. Nonetheless, popular tasks such as speech or images recognition, involve multi-dimensional input features that are characterized by strong internal dependencies between the dimensions of the input vector. We propose a novel quaternion recurrent neural network (QRNN), alongside with a quaternion long-short term memory neural network (QLSTM), that take into account both the external relations and these internal structural dependencies with the quaternion algebra. Similarly to capsules, quaternions allow the QRNN to code internal dependencies by composing and processing multidimensional features as single entities, while the recurrent operation reveals correlations between the elements composing the sequence. We show that both QRNN and QLSTM achieve better performances than RNN and LSTM in a realistic application of automatic speech recognition. Finally, we show that QRNN and QLSTM reduce by a maximum factor of 3.3x the number of free parameters needed, compared to real-valued RNNs and LSTMs to reach better results, leading to a more compact representation of the relevant information.
Recall Traces: Backtracking Models for Efficient Reinforcement Learning
Anirudh Goyal
Philemon Brakel
William Fedus
Soumye Singhal
Timothy P. Lillicrap
Sergey Levine
In many environments only a tiny subset of all states yield high reward. In these cases, few of the interactions with the environment provid… (see more)e a relevant learning signal. Hence, we may want to preferentially train on those high-reward states and the probable trajectories leading to them. To this end, we advocate for the use of a backtracking model that predicts the preceding states that terminate at a given high-reward state. We can train a model which, starting from a high value state (or one that is estimated to have high value), predicts and sample for which the (state, action)-tuples may have led to that high value state. These traces of (state, action) pairs, which we refer to as Recall Traces, sampled from this backtracking model starting from a high value state, are informative as they terminate in good states, and hence we can use these traces to improve a policy. We provide a variational interpretation for this idea and a practical algorithm in which the backtracking model samples from an approximate posterior distribution over trajectories which lead to large rewards. Our method improves the sample efficiency of both on- and off-policy RL algorithms across several environments and tasks.
Reinforcement Learning for Sustainable Agriculture
Jonathan Binas
Leonie H. Luginbuehl
Modern machine learning methods have achieved superhuman performance on a variety of tasks, simply learning from the outcomes of their actio… (see more)ns. We propose a path towards more sustainable agriculture, considering plant development an optimization problem with respect to certain parameters, such as yield and environmental impact, which can be optimized in an automated way. Specifically, we propose to use reinforcement learning to autonomously explore and learn ways of influencing the development of certain types of plants, controlling environmental parameters, such as irrigation or nutrient supply, and receiving sensory feedback, such as camera images, humidity, and moisture measurements. The trained system will thus be able to provide instructions for optimal treatment of a local population of plants, based on non-invasive measurements, such as imaging.
On the Relation Between the Sharpest Directions of DNN Loss and the SGD Step Length
Stanisław Jastrzębski
Zac Kenton
Nicolas Ballas
Asja Fischer
Amos Storkey
Stochastic Gradient Descent (SGD) based training of neural networks with a large learning rate or a small batch-size typically ends in well-… (see more)generalizing, flat regions of the weight space, as indicated by small eigenvalues of the Hessian of the training loss. However, the curvature along the SGD trajectory is poorly understood. An empirical investigation shows that initially SGD visits increasingly sharp regions, reaching a maximum sharpness determined by both the learning rate and the batch-size of SGD. When studying the SGD dynamics in relation to the sharpest directions in this initial phase, we find that the SGD step is large compared to the curvature and commonly fails to minimize the loss along the sharpest directions. Furthermore, using a reduced learning rate along these directions can improve training speed while leading to both sharper and better generalizing solutions compared to vanilla SGD. In summary, our analysis of the dynamics of SGD in the subspace of the sharpest directions shows that they influence the regions that SGD steers to (where larger learning rate or smaller batch size result in wider regions visited), the overall training speed, and the generalization ability of the final model.
Unsupervised State Representation Learning in Atari
Ankesh Anand
Evan Racah
Sherjil Ozair
Marc-Alexandre Côté
State representation learning, or the ability to capture latent generative factors of an environment, is crucial for building intelligent ag… (see more)ents that can perform a wide variety of tasks. Learning such representations without supervision from rewards is a challenging open problem. We introduce a method that learns state representations by maximizing mutual information across spatially and temporally distinct features of a neural encoder of the observations. We also introduce a new benchmark based on Atari 2600 games where we evaluate representations based on how well they capture the ground truth state variables. We believe this new framework for evaluating representation learning models will be crucial for future representation learning research. Finally, we compare our technique with other state-of-the-art generative and contrastive representation learning methods. The code associated with this work is available at this https URL
Updates of Equilibrium Prop Match Gradients of Backprop Through Time in an RNN with Static Input
Maxence Ernoult
Julie Grollier
Damien Querlioz
Benjamin Scellier
Equilibrium Propagation (EP) is a biologically inspired learning algorithm for convergent recurrent neural networks, i.e. RNNs that are fed … (see more)by a static input x and settle to a steady state. Training convergent RNNs consists in adjusting the weights until the steady state of output neurons coincides with a target y. Convergent RNNs can also be trained with the more conventional Backpropagation Through Time (BPTT) algorithm. In its original formulation EP was described in the case of real-time neuronal dynamics, which is computationally costly. In this work, we introduce a discrete-time version of EP with simplified equations and with reduced simulation time, bringing EP closer to practical machine learning tasks. We first prove theoretically, as well as numerically that the neural and weight updates of EP, computed by forward-time dynamics, are step-by-step equal to the ones obtained by BPTT, with gradients computed backward in time. The equality is strict when the transition function of the dynamics derives from a primitive function and the steady state is maintained long enough. We then show for more standard discrete-time neural network dynamics that the same property is approximately respected and we subsequently demonstrate training with EP with equivalent performance to BPTT. In particular, we define the first convolutional architecture trained with EP achieving ~ 1% test error on MNIST, which is the lowest error reported with EP. These results can guide the development of deep neural networks trained with EP.
Variational Temporal Abstraction
Taesup Kim
Sungjin Ahn
We introduce a variational approach to learning and inference of temporally hierarchical structure and representation for sequential data. W… (see more)e propose the Variational Temporal Abstraction (VTA), a hierarchical recurrent state space model that can infer the latent temporal structure and thus perform the stochastic state transition hierarchically. We also propose to apply this model to implement the jumpy imagination ability in imagination-augmented agent-learning in order to improve the efficiency of the imagination. In experiments, we demonstrate that our proposed method can model 2D and 3D visual sequence datasets with interpretable temporal structure discovery and that its application to jumpy imagination enables more efficient agent-learning in a 3D navigation task.
Wasserstein Dependency Measure for Representation Learning
Sherjil Ozair
Corey Lynch
Aäron van den Oord
Sergey Levine
Pierre Sermanet
Mutual information maximization has emerged as a powerful learning objective for unsupervised representation learning obtaining state-of-the… (see more)-art performance in applications such as object recognition, speech recognition, and reinforcement learning. However, such approaches are fundamentally limited since a tight lower bound of mutual information requires sample size exponential in the mutual information. This limits the applicability of these approaches for prediction tasks with high mutual information, such as in video understanding or reinforcement learning. In these settings, such techniques are prone to overfit, both in theory and in practice, and capture only a few of the relevant factors of variation. This leads to incomplete representations that are not optimal for downstream tasks. In this work, we empirically demonstrate that mutual information-based representation learning approaches do fail to learn complete representations on a number of designed and real-world tasks. To mitigate these problems we introduce the Wasserstein dependency measure, which learns more complete representations by using the Wasserstein distance instead of the KL divergence in the mutual information estimator. We show that a practical approximation to this theoretically motivated solution, constructed using Lipschitz constraint techniques from the GAN literature, achieves substantially improved results on tasks where incomplete representations are a major challenge.
»Deep Learning ist keine Religion«
Andreas Sudmann
Quantized Guided Pruning for Efficient Hardware Implementations of Convolutional Neural Networks
Ghouthi Boukli Hacene
Vincent Gripon
Matthieu Arzel
Nicolas Farrugia
Convolutional Neural Networks (CNNs) are state-of-the-art in numerous computer vision tasks such as object classification and detection. How… (see more)ever, the large amount of parameters they contain leads to a high computational complexity and strongly limits their usability in budget-constrained devices such as embedded devices. In this paper, we propose a combination of a new pruning technique and a quantization scheme that effectively reduce the complexity and memory usage of convolutional layers of CNNs, and replace the complex convolutional operation by a low-cost multiplexer. We perform experiments on the CIFAR10, CIFAR100 and SVHN and show that the proposed method achieves almost state-of-the-art accuracy, while drastically reducing the computational and memory footprints. We also propose an efficient hardware architecture to accelerate CNN operations. The proposed hardware architecture is a pipeline and accommodates multiple layers working at the same time to speed up the inference process.
Speaker Recognition from Raw Waveform with SincNet
Deep learning is progressively gaining popularity as a viable alternative to i-vectors for speaker recognition. Promising results have been … (see more)recently obtained with Convolutional Neural Networks (CNNs) when fed by raw speech samples directly. Rather than employing standard hand-crafted features, the latter CNNs learn low-level speech representations from waveforms, potentially allowing the network to better capture important narrow-band speaker characteristics such as pitch and formants. Proper design of the neural network is crucial to achieve this goal.This paper proposes a novel CNN architecture, called SincNet, that encourages the first convolutional layer to discover more meaningful filters. SincNet is based on parametrized sinc functions, which implement band-pass filters. In contrast to standard CNNs, that learn all elements of each filter, only low and high cutoff frequencies are directly learned from data with the proposed method. This offers a very compact and efficient way to derive a customized filter bank specifically tuned for the desired application.Our experiments, conducted on both speaker identification and speaker verification tasks, show that the proposed architecture converges faster and performs better than a standard CNN on raw waveforms.
Object Detection using Deep Learning
Chamarty Anusha
P. Avadhani
P. S.
Mohannad Elhamod
Martin D. Levine
Ajeet Ram Pathak
Manjusha Pandey
Siddharth S. Rautaray
Christian Szegedy
Alexander T Toshev
Dumitru Erhan
Xiaofeng Ning
Wen Zhu
Shifeng Chen
Zhong-Qiu Zhao
Peng Zheng
Shou-tao Xu
Xindong Wu
Sakshi Indolia
Anil Kumar Goswani … (see 12 more)
S. P. Mishra
Pooja Asopa
Yann LeCun
Joseph Redmon
Santosh Kumar Divvala
Ross Girshick
Ali Farhadi
M. Kruithof
Henri Bouma
Noelle M. Fischer
Klamer Schutte
Autonomous vehicles, surveillance systems, face detection systems lead to the development of accurate object detection system [1]. These sys… (see more)tems recognize, classify and localize every object in an image by drawing bounding boxes around the object [2]. These systems use existing classification models as backbone for Object Detection purpose. Object detection is the process of finding instances of real-world objects such as human faces, animals and vehicles etc., in pictures, images or in videos. An Object detection algorithm uses extracted features and learning techniques to recognize the objects in an image. In this paper, various Object Detection techniques have been studied and some of them are implemented. As a part of this paper, three algorithms for object detection in an image were implemented and their results were compared. The algorithms are “Object Detection using Deep Learning Framework by OpenCV”, “Object Detection using Tensorflow” and “Object Detection using Keras models”.