Portrait of Yoshua Bengio

Yoshua Bengio

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research Department
Founder and Scientific Advisor, Leadership Team
Research Topics
Causality
Computational Neuroscience
Deep Learning
Generative Models
Graph Neural Networks
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Natural Language Processing
Probabilistic Models
Reasoning
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Biography

*For media requests, please write to medias@mila.quebec.

For more information please contact Marie-Josée Beauchamp, Administrative Assistant at marie-josee.beauchamp@mila.quebec.

Yoshua Bengio is recognized worldwide as a leading expert in AI. He is most known for his pioneering work in deep learning, which earned him the 2018 A.M. Turing Award, “the Nobel Prize of computing,” with Geoffrey Hinton and Yann LeCun.

Bengio is a full professor at Université de Montréal, and the founder and scientific advisor of Mila – Quebec Artificial Intelligence Institute. He is also a senior fellow at CIFAR and co-directs its Learning in Machines & Brains program, serves as special advisor and founding scientific director of IVADO, and holds a Canada CIFAR AI Chair.

In 2019, Bengio was awarded the prestigious Killam Prize and in 2022, he was the most cited computer scientist in the world by h-index. He is a Fellow of the Royal Society of London, Fellow of the Royal Society of Canada, Knight of the Legion of Honor of France and Officer of the Order of Canada. In 2023, he was appointed to the UN’s Scientific Advisory Board for Independent Advice on Breakthroughs in Science and Technology.

Concerned about the social impact of AI, Bengio helped draft the Montréal Declaration for the Responsible Development of Artificial Intelligence and continues to raise awareness about the importance of mitigating the potentially catastrophic risks associated with future AI systems.

Current Students

Collaborating Alumni - McGill University
Collaborating Alumni - Université de Montréal
Collaborating researcher - Cambridge University
Principal supervisor :
PhD - Université de Montréal
Collaborating Alumni - Université du Québec à Rimouski
Independent visiting researcher
Co-supervisor :
PhD - Université de Montréal
Collaborating Alumni - UQAR
Collaborating researcher - N/A
Principal supervisor :
PhD - Université de Montréal
Collaborating researcher - KAIST
PhD - Université de Montréal
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Research Intern - Université de Montréal
Research Intern - Université de Montréal
PhD - Université de Montréal
Master's Research - Université de Montréal
Co-supervisor :
Collaborating Alumni - Université de Montréal
Research Intern - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Collaborating Alumni - Université de Montréal
Collaborating Alumni - Université de Montréal
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating Alumni
Collaborating Alumni - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Principal supervisor :
Independent visiting researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Ying Wu Coll of Computing
PhD - University of Waterloo
Principal supervisor :
Collaborating Alumni - Max-Planck-Institute for Intelligent Systems
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - Université de Montréal
Postdoctorate - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Master's Research - Université de Montréal
Collaborating Alumni - Université de Montréal
Research Intern - Université de Montréal
Master's Research - Université de Montréal
Postdoctorate
Independent visiting researcher - Technical University of Munich
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Principal supervisor :
Postdoctorate - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Collaborating Alumni - Université de Montréal
Collaborating researcher
Collaborating researcher - KAIST
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - McGill University
Principal supervisor :

Publications

Feature-wise transformations
Vincent Dumoulin
Ethan Perez
Nathan Schucher
Florian Strub
Harm de Vries
MaD TwinNet: Masker-Denoiser Architecture with Twin Networks for Monaural Sound Source Separation
Konstantinos Drossos
Stylianos Ioannis Mimilakis
Dmitriy Serdyuk
Gerald Schuller
Tuomas Virtanen
Monaural singing voice separation task focuses on the prediction of the singing voice from a single channel music mixture signal. Current st… (see more)ate of the art (SOTA) results in monaural singing voice separation are obtained with deep learning based methods. In this work we present a novel recurrent neural approach that learns long-term temporal patterns and structures of a musical piece. We build upon the recently proposed Masker-Denoiser (MaD) architecture and we enhance it with the Twin Networks, a technique to regularize a recurrent generative network using a backward running copy of the network. We evaluate our method using the Demixing Secret Dataset and we obtain an increment to signal-to-distortion ratio (SDR) of 0.37 dB and to signal-to-interference ratio (SIR) of 0.23 dB, compared to previous SOTA results.
Information Fusion in Deep Convolutional Neural Networks for Biomedical Image Segmentation 1
Mohammad Havaei
Nicolas Guizard
Focused Hierarchical RNNs for Conditional Sequence Processing
Nan Rosemary Ke
Konrad Żołna
Zhouhan Lin
Adam Trischler
Recurrent Neural Networks (RNNs) with attention mechanisms have obtained state-of-the-art results for many sequence processing tasks. Most o… (see more)f these models use a simple form of encoder with attention that looks over the entire sequence and assigns a weight to each token independently. We present a mechanism for focusing RNN encoders for sequence modelling tasks which allows them to attend to key parts of the input as needed. We formulate this using a multi-layer conditional sequence encoder that reads in one token at a time and makes a discrete decision on whether the token is relevant to the context or question being asked. The discrete gating mechanism takes in the context embedding and the current hidden state as inputs and controls information flow into the layer above. We train it using policy gradient methods. We evaluate this method on several types of tasks with different attributes. First, we evaluate the method on synthetic tasks which allow us to evaluate the model for its generalization ability and probe the behavior of the gates in more controlled settings. We then evaluate this approach on large scale Question Answering tasks including the challenging MS MARCO and SearchQA tasks. Our models shows consistent improvements for both tasks over prior work and our baselines. It has also shown to generalize significantly better on synthetic tasks as compared to the baselines.
Mutual Information Neural Estimation
Ishmael Belghazi
Aristide Baratin
Sai Rajeswar
Sherjil Ozair
We argue that the estimation of mutual information between high dimensional continuous random variables can be achieved by gradient descent … (see more)over neural networks. We present a Mutual Information Neural Estimator (MINE) that is linearly scalable in dimensionality as well as in sample size, trainable through back-prop, and strongly consistent. We present a handful of applications on which MINE can be used to minimize or maximize mutual information. We apply MINE to improve adversarially trained generative models. We also use MINE to implement Information Bottleneck, applying it to supervised classification; our results demonstrate substantial improvement in flexibility and performance in these settings.
Learning Hierarchical Structures On-The-Fly with a Recurrent-Recursive Model for Sequences
Athul Jacob
Zhouhan Lin
We propose a hierarchical model for sequential data that learns a tree on-the-fly, i.e. while reading the sequence. In the model, a recurren… (see more)t network adapts its structure and reuses recurrent weights in a recursive manner. This creates adaptive skip-connections that ease the learning of long-term dependencies. The tree structure can either be inferred without supervision through reinforcement learning, or learned in a supervised manner. We provide preliminary experiments in a novel Math Expression Evaluation (MEE) task, which is created to have a hierarchical tree structure that can be used to study the effectiveness of our model. Additionally, we test our model in a well-known propositional logic and language modelling tasks. Experimental results have shown the potential of our approach.
Neural Models for Key Phrase Extraction and Question Generation
Sandeep Subramanian
Tong Wang
Xingdi Yuan
Saizheng Zhang
Adam Trischler
We propose a two-stage neural model to tackle question generation from documents. First, our model estimates the probability that word seque… (see more)nces in a document are ones that a human would pick when selecting candidate answers by training a neural key-phrase extractor on the answers in a question-answering corpus. Predicted key phrases then act as target answers and condition a sequence-to-sequence question-generation model with a copy mechanism. Empirically, our key-phrase extraction model significantly outperforms an entity-tagging baseline and existing rule-based approaches. We further demonstrate that our question generation system formulates fluent, answerable questions from key phrases. This two-stage system could be used to augment or generate reading comprehension datasets, which may be leveraged to improve machine reading systems or in educational settings.
Straight to the Tree: Constituency Parsing with Neural Syntactic Distance
Yikang Shen
Zhouhan Lin
Athul Jacob
In this work, we propose a novel constituency parsing scheme. The model first predicts a real-valued scalar, named syntactic distance, for e… (see more)ach split position in the sentence. The topology of grammar tree is then determined by the values of syntactic distances. Compared to traditional shift-reduce parsing schemes, our approach is free from the potentially disastrous compounding error. It is also easier to parallelize and much faster. Our model achieves the state-of-the-art single model F1 score of 92.1 on PTB and 86.4 on CTB dataset, which surpasses the previous single model results by a large margin.
On the Spectral Bias of Deep Neural Networks
Nasim Rahaman
Devansh Arpit
Aristide Baratin
Felix Draxler
Min Lin
Fred Hamprecht
It is well known that over-parametrized deep neural networks (DNNs) are an overly expressive class of functions that can memorize even rando… (see more)m data with
Deep convolutional networks for quality assessment of protein folds
Georgy Derevyanko
Sergei Grudinin
Guillaume Lamoureux
Motivation The computational prediction of a protein structure from its sequence generally relies on a method to assess the quality of prote… (see more)in models. Most assessment methods rank candidate models using heavily engineered structural features, defined as complex functions of the atomic coordinates. However, very few methods have attempted to learn these features directly from the data. Results We show that deep convolutional networks can be used to predict the ranking of model structures solely on the basis of their raw three-dimensional atomic densities, without any feature tuning. We develop a deep neural network that performs on par with state-of-the-art algorithms from the literature. The network is trained on decoys from the CASP7 to CASP10 datasets and its performance is tested on the CASP11 dataset. Additional testing on decoys from the CASP12, CAMEO and 3DRobot datasets confirms that the network performs consistently well across a variety of protein structures. While the network learns to assess structural decoys globally and does not rely on any predefined features, it can be analyzed to show that it implicitly identifies regions that deviate from the native structure. Availability and implementation The code and the datasets are available at https://github.com/lamoureux-lab/3DCNN_MQA. Supplementary information Supplementary data are available at Bioinformatics online.
Modularity Matters: Learning Invariant Relational Reasoning Tasks
Jason Jo
Vikas Verma
We focus on two supervised visual reasoning tasks whose labels encode a semantic relational rule between two or more objects in an image: th… (see more)e MNIST Parity task and the colorized Pentomino task. The objects in the images undergo random translation, scaling, rotation and coloring transformations. Thus these tasks involve invariant relational reasoning. We report uneven performance of various deep CNN models on these two tasks. For the MNIST Parity task, we report that the VGG19 model soundly outperforms a family of ResNet models. Moreover, the family of ResNet models exhibits a general sensitivity to random initialization for the MNIST Parity task. For the colorized Pentomino task, now both the VGG19 and ResNet models exhibit sluggish optimization and very poor test generalization, hovering around 30% test error. The CNN we tested all learn hierarchies of fully distributed features and thus encode the distributed representation prior. We are motivated by a hypothesis from cognitive neuroscience which posits that the human visual cortex is modularized, and this allows the visual cortex to learn higher order invariances. To this end, we consider a modularized variant of the ResNet model, referred to as a Residual Mixture Network (ResMixNet) which employs a mixture-of-experts architecture to interleave distributed representations with more specialized, modular representations. We show that very shallow ResMixNets are capable of learning each of the two tasks well, attaining less than 2% and 1% test error on the MNIST Parity and the colorized Pentomino tasks respectively. Most importantly, the ResMixNet models are extremely parameter efficient: generalizing better than various non-modular CNNs that have over 10x the number of parameters. These experimental results support the hypothesis that modularity is a robust prior for learning invariant relational reasoning.
On the Iterative Refinement of Densely Connected Representation Levels for Semantic Segmentation
Arantxa Casanova
Guillem Cucurull
Michal Drozdzal
State-of-the-art semantic segmentation approaches increase the receptive field of their models by using either a downsampling path composed … (see more)of poolings/strided convolutions or successive dilated convolutions. However, it is not clear which operation leads to best results. In this paper, we systematically study the differences introduced by distinct receptive field enlargement methods and their impact on the performance of a novel architecture, called Fully Convolutional DenseResNet (FC-DRN). FC-DRN has a densely connected backbone composed of residual networks. Following standard image segmentation architectures, receptive field enlargement operations that change the representation level are interleaved among residual networks. This allows the model to exploit the benefits of both residual and dense connectivity patterns, namely: gradient flow, iterative refinement of representations, multi-scale feature combination and deep supervision. In order to highlight the potential of our model, we test it on the challenging CamVid urban scene understanding benchmark and make the following observations: 1) downsampling operations outperform dilations when the model is trained from scratch, 2) dilations are useful during the finetuning step of the model, 3) coarser representations require less refinement steps, and 4) ResNets (by model construction) are good regularizers, since they can reduce the model capacity when needed. Finally, we compare our architecture to alternative methods and report state-of-the-art result on the Camvid dataset, with at least twice fewer parameters.