Portrait of Yoshua Bengio

Yoshua Bengio

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research Department
Founder and Scientific Advisor, Leadership Team
Research Topics
Causality
Computational Neuroscience
Deep Learning
Generative Models
Graph Neural Networks
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Natural Language Processing
Probabilistic Models
Reasoning
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Biography

*For media requests, please write to medias@mila.quebec.

For more information please contact Marie-Josée Beauchamp, Administrative Assistant at marie-josee.beauchamp@mila.quebec.

Yoshua Bengio is recognized worldwide as a leading expert in AI. He is most known for his pioneering work in deep learning, which earned him the 2018 A.M. Turing Award, “the Nobel Prize of computing,” with Geoffrey Hinton and Yann LeCun.

Bengio is a full professor at Université de Montréal, and the founder and scientific advisor of Mila – Quebec Artificial Intelligence Institute. He is also a senior fellow at CIFAR and co-directs its Learning in Machines & Brains program, serves as special advisor and founding scientific director of IVADO, and holds a Canada CIFAR AI Chair.

In 2019, Bengio was awarded the prestigious Killam Prize and in 2022, he was the most cited computer scientist in the world by h-index. He is a Fellow of the Royal Society of London, Fellow of the Royal Society of Canada, Knight of the Legion of Honor of France and Officer of the Order of Canada. In 2023, he was appointed to the UN’s Scientific Advisory Board for Independent Advice on Breakthroughs in Science and Technology.

Concerned about the social impact of AI, Bengio helped draft the Montréal Declaration for the Responsible Development of Artificial Intelligence and continues to raise awareness about the importance of mitigating the potentially catastrophic risks associated with future AI systems.

Current Students

Collaborating Alumni - McGill University
Collaborating Alumni - Université de Montréal
Collaborating researcher - Cambridge University
Principal supervisor :
PhD - Université de Montréal
Independent visiting researcher
Co-supervisor :
PhD - Université de Montréal
Independent visiting researcher
Principal supervisor :
Collaborating researcher - N/A
Principal supervisor :
PhD - Université de Montréal
Collaborating researcher - KAIST
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
Co-supervisor :
Independent visiting researcher
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating Alumni
Collaborating Alumni - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Principal supervisor :
Independent visiting researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Ying Wu Coll of Computing
Collaborating researcher - University of Waterloo
Principal supervisor :
Collaborating Alumni - Max-Planck-Institute for Intelligent Systems
Collaborating researcher - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - Université de Montréal
Postdoctorate - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Independent visiting researcher
Principal supervisor :
Postdoctorate - Université de Montréal
Collaborating Alumni - Université de Montréal
Collaborating Alumni - Université de Montréal
Postdoctorate
Co-supervisor :
Independent visiting researcher - Technical University of Munich
PhD - Université de Montréal
Co-supervisor :
Independent visiting researcher
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - McGill University
Principal supervisor :

Publications

Systematic Evaluation of Causal Discovery in Visual Model Based Reinforcement Learning
Nan Rosemary Ke
Aniket Rajiv Didolkar
Danilo Jimenez Rezende
Michael Curtis Mozer
Inducing causal relationships from observations is a classic problem in machine learning. Most work in causality starts from the premise tha… (see more)t the causal variables themselves are observed. However, for AI agents such as robots trying to make sense of their environment, the only observables are low-level variables like pixels in images. To generalize well, an agent must induce high-level variables, particularly those which are causal or are affected by causal variables. A central goal for AI and causality is thus the joint discovery of abstract representations and causal structure. However, we note that existing environments for studying causal induction are poorly suited for this objective because they have complicated task-specific causal graphs which are impossible to manipulate parametrically (e.g., number of nodes, sparsity, causal chain length, etc.). In this work, our goal is to facilitate research in learning representations of high-level variables as well as causal structures among them. In order to systematically probe the ability of methods to identify these variables and structures, we design a suite of benchmarking RL environments. We evaluate various representation learning algorithms from the literature and find that explicitly incorporating structure and modularity in models can help causal induction in model-based reinforcement learning.
FloW: A Dataset and Benchmark for Floating Waste Detection in Inland Waters
Yuwei Cheng
Jiannan Zhu
Mengxin Jiang
Changsong Pang
Peidong Wang
Olawale Moses Onabola
Yimin Liu
Dianbo Liu
Marine debris is severely threatening the marine lives and causing sustained pollution to the whole ecosystem. To prevent the wastes from ge… (see more)tting into the ocean, it is helpful to clean up the floating wastes in inland waters using the autonomous cleaning devices like unmanned surface vehicles. The cleaning efficiency relies on a high-accurate and robust object detection system. However, the small size of the target, the strong light reflection over water surface, and the reflection of other objects on bank-side all bring challenges to the vision-based object detection system. To promote the practical application for autonomous floating wastes cleaning, we present FloW†, the first dataset for floating waste detection in inland water areas. The dataset consists of an image sub-dataset FloW-Img and a multimodal sub-dataset FloW-RI which contains synchronized millimeter wave radar data and images. Accurate annotations for images and radar data are provided, supporting floating waste detection strategies based on image, radar data, and the fusion of two sensors. We perform several baseline experiments on our dataset, including vision-based and radar-based detection methods. The results show that, the detection accuracy is relatively low and floating waste detection still remains a challenging task.
Learning Neural Causal Models with Active Interventions
Yashas Annadani
Patrick Schwab
Bernhard Schölkopf
Michael Curtis Mozer
Nan Rosemary Ke
Discovering causal structures from data is a challenging inference problem of fundamental importance in all areas of science. The appealing … (see more)scaling properties of neural networks have recently led to a surge of interest in differentiable neural network-based methods for learning causal structures from data. So far, differentiable causal discovery has focused on static datasets of observational or interventional origin. In this work, we introduce an active intervention-targeting mechanism which enables quick identification of the underlying causal structure of the data-generating process. Our method significantly reduces the required number of interactions compared with random intervention targeting and is applicable for both discrete and continuous optimization formulations of learning the underlying directed acyclic graph (DAG) from data. We examine the proposed method across multiple frameworks in a wide range of settings and demonstrate superior performance on multiple benchmarks from simulated to real-world data.
Problems in the deployment of machine-learned models in health care
Tianshi Cao
Joseph D Viviano
Chinwei Huang
Michael Fralick
Marzyeh Ghassemi
M. Mamdani
R. Greiner
Exploration-Driven Representation Learning in Reinforcement Learning
Mingde Zhao
Marlos C. Machado
Sainbayar Sukhbaatar
Ludovic Denoyer
Alessandro Lazaric
Learning reward-agnostic representations is an emerging paradigm in reinforcement learning. These representations can be leveraged for sever… (see more)al purposes ranging from reward shaping to skill discovery. Nevertheless, in order to learn such representations, existing methods often rely on assuming uniform access to the state space. With such a privilege, the agent’s coverage of the environment can be limited which hurts the quality of the learned representations. In this work, we introduce a method that explicitly couples representation learning with exploration when the agent is not provided with a uniform prior over the state space. Our method learns representations that constantly drive exploration while the data generated by the agent’s exploratory behavior drives the learning of better representations. We empirically validate our approach in goal-achieving tasks, demonstrating that the learned representation captures the dynamics of the environment, leads to more accurate value estimation, and to faster credit assignment, both when used for control and for reward shaping. Finally, the exploratory policy that emerges from our approach proves to be successful at continuous navigation tasks with sparse rewards.
Combating False Negatives in Adversarial Imitation Learning
Léonard Boussioux
David Y. T. Hui
Maxime Chevalier-Boisvert
In adversarial imitation learning, a discriminator is trained to differentiate agent episodes from expert demonstrations representing the de… (see more)sired behavior. However, as the trained policy learns to be more successful, the negative examples (the ones produced by the agent) become increasingly similar to expert ones. Despite the fact that the task is successfully accomplished in some of the agent's trajectories, the discriminator is trained to output low values for them. We hypothesize that this inconsistent training signal for the discriminator can impede its learning, and consequently leads to worse overall performance of the agent. We show experimental evidence for this hypothesis and that the ‘False Negatives’ (i.e. successful agent episodes) significantly hinder adversarial imitation learning, which is the first contribution of this paper. Then, we propose a method to alleviate the impact of false negatives and test it on the BabyAI environment. This method consistently improves sample efficiency over the baselines by at least an order of magnitude.
Deep learning for AI
Geoffrey Hinton
Deep learning for AI
Geoffrey Hinton
How can neural networks learn the rich internal representations required for difficult tasks such as recognizing objects or understanding la… (see more)nguage?
Deep learning for AI
Geoffrey Hinton
Deep learning for AI
Geoffrey Hinton
Deep learning for AI
Geoffrey Hinton
How can neural networks learn the rich internal representations required for difficult tasks such as recognizing objects or understanding la… (see more)nguage?
Deep learning for AI
Geoffrey Hinton
How can neural networks learn the rich internal representations required for difficult tasks such as recognizing objects or understanding la… (see more)nguage?