Multi-center benchmarking of cervical spinal cord RF coils for 7 T MRI: A traveling spines study
Eva Alonso‐Ortiz
Daniel Papp
Robert L. Barry
Kyota Poëti
Alan C. Seifert
Kyle M. Gilbert
Nibardo Lopez‐Rios
Jan Paska
Falk Eippert
Nikolaus Weiskopf
Laura Beghini
Nadine Graedel
Robert Trampel
Martina F Callaghan
Christoph S. Aigner
Patrick Freund
Maryam Seif
Aurélien Destruel
Virginie Callot
Johanna Vannesjo … (voir 1 de plus)
Multi‐center benchmarking of cervical spinal cord <scp>RF</scp> coils for 7 T <scp>MRI</scp>: A traveling spines study
Eva Alonso‐Ortiz
Daniel Papp
Robert L. Barry
Kyota Poëti
Alan C. Seifert
Kyle M. Gilbert
Nibardo Lopez‐Rios
Jan Paska
Falk Eippert
Nikolaus Weiskopf
Laura Beghini
Nadine N. Graedel
Robert Trampel
Martina F. Callaghan
Christoph S. Aigner
Patrick Freund
Maryam Seif
Aurélien Destruel
Virginie Callot
Johanna Vannesjo … (voir 1 de plus)
SDLog: A Deep Learning Framework for Detecting Sensitive Information in Software Logs
Roozbeh Aghili
Xingfang Wu
Heng Li
SDLog: A Deep Learning Framework for Detecting Sensitive Information in Software Logs
Roozbeh Aghili
Xingfang Wu
Heng Li
Self-Evolving Curriculum for LLM Reasoning
Xiaoyin Chen
Jiarui Lu
Minsu Kim
Dinghuai Zhang
Alex Pich'e
Nicolas Gontier
Ehsan Kamalloo
Self-Evolving Curriculum for LLM Reasoning
Xiaoyin Chen
Jiarui Lu
Minsu Kim
Dinghuai Zhang
Alex Pich'e
Nicolas Gontier
Ehsan Kamalloo
Virtual Cells: Predict, Explain, Discover
Emmanuel Noutahi
Jason Hartford
Prudencio Tossou
Shawn Whitfield
Ali Denton
Cas Wognum
Kristina Ulicna
Jonathan Hsu
Michael Cuccarese
Christopher Gibson
Daniel Cohen
Berton Earnshaw
Virtual Cells: Predict, Explain, Discover
Emmanuel Noutahi
Jason Hartford
Prudencio Tossou
Shawn Whitfield
Ali Denton
Cas Wognum
Kristina Ulicna
Michael Craig
Jonathan Hsu
Michael Cuccarese
Christopher Gibson
Daniel Cohen
Berton Earnshaw
Building spatial world models from sparse transitional episodic memories
Zizhan He
Maxime Daigle
Many animals possess a remarkable capacity to rapidly construct flexible mental models of their environments. These world models are crucial… (voir plus) for ethologically relevant behaviors such as navigation, exploration, and planning. The ability to form episodic memories and make inferences based on these sparse experiences is believed to underpin the efficiency and adaptability of these models in the brain. Here, we ask: Can a neural network learn to construct a spatial model of its surroundings from sparse and disjoint episodic memories? We formulate the problem in a simulated world and propose a novel framework, the Episodic Spatial World Model (ESWM), as a potential answer. We show that ESWM is highly sample-efficient, requiring minimal observations to construct a robust representation of the environment. It is also inherently adaptive, allowing for rapid updates when the environment changes. In addition, we demonstrate that ESWM readily enables near-optimal strategies for exploring novel environments and navigating between arbitrary points, all without the need for additional training.
Building spatial world models from sparse transitional episodic memories
Zizhan He
Maxime Daigle
Calm-Whisper: Reduce Whisper Hallucination On Non-Speech By Calming Crazy Heads Down
Yingzhi Wang
Anas Alhmoud
Saad Alsahly
Muhammad Alqurishi
Calm-Whisper: Reduce Whisper Hallucination On Non-Speech By Calming Crazy Heads Down
Yingzhi Wang
Anas Alhmoud
Saad Alsahly
Muhammad Alqurishi