Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
The patient advisor, an organizational resource as a lever for an enhanced oncology patient experience (PAROLE-onco): a longitudinal multiple case study protocol
Effective communication is about the dissemination of properly worded meaningful ideas/messages that are comprehensible to both sen… (voir plus)der and receiver and which ultimately can attract the desired response or feedback. For machines to engage in a conversation, it is therefore essential to enable them to clarify ambiguity and achieve a common ground. We introduce Abg-CoQA, a novel dataset for clarifying ambiguity in Conversational Question Answering systems. Our dataset contains 9k questions with answers where 1k questions are ambiguous, obtained from 4k text passages from five diverse domains. For ambiguous questions, a clarification conversational turn is collected. We evaluate strong language generation models and conversational question answering models on Abg-CoQA. The best-performing system achieves a BLEU-1 score of 12.9% on generating clarification question, which is 27.9 points behind human performance (40.8%); and a F1 score of 40.1% on question answering after clarification, which is 35.1 points behind human performance (75.2%), indicating there is ample room for improvement.
2021-01-01
Conference on Automated Knowledge Base Construction (publié)
Strong empirical evidence that one machine-learning algorithm A outperforms another one B ideally calls for multiple trials optimizing the l… (voir plus)earning pipeline over sources of variation such as data sampling, data augmentation, parameter initialization, and hyperparameters choices. This is prohibitively expensive, and corners are cut to reach conclusions. We model the whole benchmarking process, revealing that variance due to data sampling, parameter initialization and hyperparameter choice impact markedly the results. We analyze the predominant comparison methods used today in the light of this variance. We show a counter-intuitive result that adding more sources of variation to an imperfect estimator approaches better the ideal estimator at a 51 times reduction in compute cost. Building on these results, we study the error rate of detecting improvements, on five different deep-learning tasks/architectures. This study leads us to propose recommendations for performance comparisons.
Neural networks are known to be vulnerable to adversarial attacks -- slight but carefully constructed perturbations of the inputs which can … (voir plus)drastically impair the network's performance. Many defense methods have been proposed for improving robustness of deep networks by training them on adversarially perturbed inputs. However, these models often remain vulnerable to new types of attacks not seen during training, and even to slightly stronger versions of previously seen attacks. In this work, we propose a novel approach to adversarial robustness, which builds upon the insights from the domain adaptation field. Our method, called Adversarial Feature Desensitization (AFD), aims at learning features that are invariant towards adversarial perturbations of the inputs. This is achieved through a game where we learn features that are both predictive and robust (insensitive to adversarial attacks), i.e. cannot be used to discriminate between natural and adversarial data. Empirical results on several benchmarks demonstrate the effectiveness of the proposed approach against a wide range of attack types and attack strengths. Our code is available at https://github.com/BashivanLab/afd.
Transformers have been shown to be able to 001 perform deductive reasoning on a logical rule-002 base containing rules and statements writte… (voir plus)n 003 in natural language. Recent works show that 004 such models can also produce the reasoning 005 steps (i.e., the proof graph ) that emulate the 006 model’s logical reasoning process. But these 007 models behave as a black-box unit that emu-008 lates the reasoning process without any causal 009 constraints in the reasoning steps, thus ques-010 tioning the faithfulness. In this work, we frame 011 the deductive logical reasoning task as a causal 012 process by defining three modular components: 013 rule selection, fact selection, and knowledge 014 composition. The rule and fact selection steps 015 select the candidate rule and facts to be used 016 and then the knowledge composition combines 017 them to generate new inferences. This ensures 018 model faithfulness by assured causal relation 019 from the proof step to the inference reasoning. 020 To test our causal reasoning framework, we 021 propose C AUSAL R where the above three com-022 ponents are independently modeled by trans-023 formers. We observe that C AUSAL R is robust 024 to novel language perturbations, and is com-025 petitive with previous works on existing rea-026 soning datasets. Furthermore, the errors made 027 by C AUSAL R are more interpretable due to 028 the multi-modular approach compared to black-029 box generative models. 1 030
Automatic Fall Risk Detection based on Imbalanced Data
In recent years, the declining birthrate and aging population have gradually brought countries into an ageing society. Regarding accidents t… (voir plus)hat occur amongst the elderly, falls are an essential problem that quickly causes indirect physical loss. In this paper, we propose a pose estimation-based fall detection algorithm to detect fall risks. We use body ratio, acceleration and deflection as key features instead of using the body keypoints coordinates. Since fall data is rare in real-world situations, we train and evaluate our approach in a highly imbalanced data setting. We assess not only different imbalanced data handling methods but also different machine learning algorithms. After oversampling on our training data, the K-Nearest Neighbors (KNN) algorithm achieves the best performance. The F1 scores for three different classes, Normal, Fall, and Lying, are 1.00, 0.85 and 0.96, which is comparable to previous research. The experiment shows that our approach is more interpretable with the key feature from skeleton information. Moreover, it can apply in multi-people scenarios and has robustness on medium occlusion.
The BabyAI platform is designed to measure the sample efficiency of training an agent to follow grounded-language instructions. BabyAI 1.0 … (voir plus)presents baseline results of an agent trained by deep imitation or reinforcement learning. BabyAI 1.1 improves the agent’s architecture in three minor ways. This increases reinforcement learning sample efficiency by up to 3 × and improves imitation learning performance on the hardest level from 77% to 90 . 4% . We hope that these improvements increase the computational efficiency of BabyAI experiments and help users design better agents.