Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Boosting Exploration in Multi-Task Reinforcement Learning using Adversarial Networks
Several neuronal mechanisms have been proposed to account for the formation of cognitive abilities through postnatal interactions with the p… (voir plus)hysical and socio-cultural environment. Here, we introduce a three-level computational model of information processing and acquisition of cognitive abilities. We propose minimal architectural requirements to build these levels and how the parameters affect their performance and relationships. The first sensorimotor level handles local nonconscious processing, here during a visual classification task. The second level or cognitive level globally integrates the information from multiple local processors via long-ranged connections and synthesizes it in a global, but still nonconscious manner. The third and cognitively highest level handles the information globally and consciously. It is based on the Global Neuronal Workspace (GNW) theory and is referred to as conscious level. We use trace and delay conditioning tasks to, respectively, challenge the second and third levels. Results first highlight the necessity of epigenesis through selection and stabilization of synapses at both local and global scales to allow the network to solve the first two tasks. At the global scale, dopamine appears necessary to properly provide credit assignment despite the temporal delay between perception and reward. At the third level, the presence of interneurons becomes necessary to maintain a self-sustained representation within the GNW in the absence of sensory input. Finally, while balanced spontaneous intrinsic activity facilitates epigenesis at both local and global scales, the balanced excitatory-inhibitory ratio increases performance. Finally, we discuss the plausibility of the model in both neurodevelopmental and artificial intelligence terms.
Several neuronal mechanisms have been proposed to account for the formation of cognitive abilities through postnatal interactions with the p… (voir plus)hysical and socio-cultural environment. Here, we introduce a three-level computational model of information processing and acquisition of cognitive abilities. We propose minimal architectural requirements to build these levels and how the parameters affect their performance and relationships. The first sensorimotor level handles local nonconscious processing, here during a visual classification task. The second level or cognitive level globally integrates the information from multiple local processors via long-ranged connections and synthesizes it in a global, but still nonconscious manner. The third and cognitively highest level handles the information globally and consciously. It is based on the Global Neuronal Workspace (GNW) theory and is referred to as conscious level. We use trace and delay conditioning tasks to, respectively, challenge the second and third levels. Results first highlight the necessity of epigenesis through selection and stabilization of synapses at both local and global scales to allow the network to solve the first two tasks. At the global scale, dopamine appears necessary to properly provide credit assignment despite the temporal delay between perception and reward. At the third level, the presence of interneurons becomes necessary to maintain a self-sustained representation within the GNW in the absence of sensory input. Finally, while balanced spontaneous intrinsic activity facilitates epigenesis at both local and global scales, the balanced excitatory-inhibitory ratio increases performance. Finally, we discuss the plausibility of the model in both neurodevelopmental and artificial intelligence terms.
Human observers can rapidly perceive complex real-world scenes. Grouping visual elements into meaningful units is an integral part of this p… (voir plus)rocess. Yet, so far, the neural underpinnings of perceptual grouping have only been studied with simple lab stimuli. We here uncover the neural mechanisms of one important perceptual grouping cue, local parallelism. Using a new, image-computable algorithm for detecting local symmetry in line drawings and photographs, we manipulated the local parallelism content of real-world scenes. We decoded scene categories from patterns of brain activity obtained via functional magnetic resonance imaging (fMRI) in 38 human observers while they viewed the manipulated scenes. Decoding was significantly more accurate for scenes containing strong local parallelism compared to weak local parallelism in the parahippocampal place area (PPA), indicating a central role of parallelism in scene perception. To investigate the origin of the parallelism signal we performed a model-based fMRI analysis of the public BOLD5000 dataset, looking for voxels whose activation time course matches that of the locally parallel content of the 4916 photographs viewed by the participants in the experiment. We found a strong relationship with average local symmetry in visual areas V1-4, PPA, and retrosplenial cortex (RSC). Notably, the parallelism-related signal peaked first in V4, suggesting V4 as the site for extracting paralleism from the visual input. We conclude that local parallelism is a perceptual grouping cue that influences neuronal activity throughout the visual hierarchy, presumably starting at V4. Parallelism plays a key role in the representation of scene categories in PPA.
Human observers can rapidly perceive complex real-world scenes. Grouping visual elements into meaningful units is an integral part of this p… (voir plus)rocess. Yet, so far, the neural underpinnings of perceptual grouping have only been studied with simple lab stimuli. We here uncover the neural mechanisms of one important perceptual grouping cue, local parallelism. Using a new, image-computable algorithm for detecting local symmetry in line drawings and photographs, we manipulated the local parallelism content of real-world scenes. We decoded scene categories from patterns of brain activity obtained via functional magnetic resonance imaging (fMRI) in 38 human observers while they viewed the manipulated scenes. Decoding was significantly more accurate for scenes containing strong local parallelism compared to weak local parallelism in the parahippocampal place area (PPA), indicating a central role of parallelism in scene perception. To investigate the origin of the parallelism signal we performed a model-based fMRI analysis of the public BOLD5000 dataset, looking for voxels whose activation time course matches that of the locally parallel content of the 4916 photographs viewed by the participants in the experiment. We found a strong relationship with average local symmetry in visual areas V1-4, PPA, and retrosplenial cortex (RSC). Notably, the parallelism-related signal peaked first in V4, suggesting V4 as the site for extracting paralleism from the visual input. We conclude that local parallelism is a perceptual grouping cue that influences neuronal activity throughout the visual hierarchy, presumably starting at V4. Parallelism plays a key role in the representation of scene categories in PPA.
Abstract Artificial intelligence (AI) and machine learning are changing our world through their impact on sectors including health care, edu… (voir plus)cation, employment, finance, and law. AI systems are developed using data that reflect the implicit and explicit biases of society, and there are significant concerns about how the predictive models in AI systems amplify inequity, privilege, and power in society. The widespread applications of AI have led to mainstream discourse about how AI systems are perpetuating racism, sexism, and classism; yet, concerns about ageism have been largely absent in the AI bias literature. Given the globally aging population and proliferation of AI, there is a need to critically examine the presence of age-related bias in AI systems. This forum article discusses ageism in AI systems and introduces a conceptual model that outlines intersecting pathways of technology development that can produce and reinforce digital ageism in AI systems. We also describe the broader ethical and legal implications and considerations for future directions in digital ageism research to advance knowledge in the field and deepen our understanding of how ageism in AI is fostered by broader cycles of injustice.
Abstract Artificial intelligence (AI) and machine learning are changing our world through their impact on sectors including health care, edu… (voir plus)cation, employment, finance, and law. AI systems are developed using data that reflect the implicit and explicit biases of society, and there are significant concerns about how the predictive models in AI systems amplify inequity, privilege, and power in society. The widespread applications of AI have led to mainstream discourse about how AI systems are perpetuating racism, sexism, and classism; yet, concerns about ageism have been largely absent in the AI bias literature. Given the globally aging population and proliferation of AI, there is a need to critically examine the presence of age-related bias in AI systems. This forum article discusses ageism in AI systems and introduces a conceptual model that outlines intersecting pathways of technology development that can produce and reinforce digital ageism in AI systems. We also describe the broader ethical and legal implications and considerations for future directions in digital ageism research to advance knowledge in the field and deepen our understanding of how ageism in AI is fostered by broader cycles of injustice.