Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Is there a way to design powerful AI systems based on machine learning methods that would satisfy probabilistic safety guarantees? With the … (voir plus)long-term goal of obtaining a probabilistic guarantee that would apply in every context, we consider estimating a context-dependent bound on the probability of violating a given safety specification. Such a risk evaluation would need to be performed at run-time to provide a guardrail against dangerous actions of an AI. Noting that different plausible hypotheses about the world could produce very different outcomes, and because we do not know which one is right, we derive bounds on the safety violation probability predicted under the true but unknown hypothesis. Such bounds could be used to reject potentially dangerous actions. Our main results involve searching for cautious but plausible hypotheses, obtained by a maximization that involves Bayesian posteriors over hypotheses. We consider two forms of this result, in the iid case and in the non-iid case, and conclude with open problems towards turning such theoretical results into practical AI guardrails.
While deep learning (DL) has permeated, and become an integral component of many critical software systems, today software engineering resea… (voir plus)rch hasn't explored how to separately test data and models that are integral for DL approaches to work effectively. The main challenge in independently testing these components arises from the tight dependency between data and models. This research explores this gap, introducing our methodology of mock deep testing for unit testing of DL applications. To enable unit testing, we introduce a design paradigm that decomposes the workflow into distinct, manageable components, minimizes sequential dependencies, and modularizes key stages of the DL. For unit testing these components, we propose modeling their dependencies using mocks. This modular approach facilitates independent development and testing of the components, ensuring comprehensive quality assurance throughout the development process. We have developed KUnit, a framework for enabling mock deep testing for the Keras library. We empirically evaluated KUnit to determine the effectiveness of mocks. Our assessment of 50 DL programs obtained from Stack Overflow and GitHub shows that mocks effectively identified 10 issues in the data preparation stage and 53 issues in the model design stage. We also conducted a user study with 36 participants using KUnit to perceive the effectiveness of our approach. Participants using KUnit successfully resolved 25 issues in the data preparation stage and 38 issues in the model design stage. Our findings highlight that mock objects provide a lightweight emulation of the dependencies for unit testing, facilitating early bug detection. Lastly, to evaluate the usability of KUnit, we conducted a post-study survey. The results reveal that KUnit is helpful to DL application developers, enabling them to independently test each component effectively in different stages.
2025-05-06
2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE) (publié)