Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Language Identification (LID) is a core task in multilingual NLP, yet current systems often overfit to clean, monolingual data. This work in… (see more)troduces DIVERS-BENCH, a comprehensive evaluation of state-of-the-art LID models across diverse domains, including speech transcripts, web text, social media texts, children's stories, and code-switched text. Our findings reveal that while models achieve high accuracy on curated datasets, performance degrades sharply on noisy and informal inputs. We also introduce DIVERS-CS, a diverse code-switching benchmark dataset spanning 10 language pairs, and show that existing models struggle to detect multiple languages within the same sentence. These results highlight the need for more robust and inclusive LID systems in real-world settings.
As real-world infrastructure systems become increasingly complex and large-scale, there is a growing need for learning-based control strateg… (see more)ies that can make informed decisions in complex and dynamic environments. However, large-scale problems — such as power grid control — introduce high-dimensional action spaces and necessitate transferability across varying grid topologies. We introduce **H**ierarchical **E**xpert-Guided **R**econfiguration **O**ptimization for **G**raph **T**opologies, **HERO-GT**, a model-based planning approach that combines a pretrained graph neural network (GNN) for topology-aware action pruning with a Monte Carlo Tree Search (MCTS) planner for targeted, structured exploration. More specifically, the high-level GNN predicts a promising subset of actions, which the low-level MCTS agent uses to focus its search and reduce computational overhead while remaining adaptable to unseen graph structures. Furthermore, the MCTS planner leverages a given *default policy*---which may be defined, for example, by heuristics, problem relaxations, or rule-based methods---to bias the search and prioritize actions that are expected to improve performance over the default. We deploy HERO-GT in power grid environments, demonstrating that it not only improves over a strong default policy, but also scales to a realistic operational setting where exhaustive search becomes computationally infeasible.