Portrait de Yashar Hezaveh

Yashar Hezaveh

Membre académique associé
Professeur adjoint, Université de Montréal, Département de physique
Sujets de recherche
Apprentissage de représentations
Apprentissage profond
Vision par ordinateur

Biographie

Yashar Hezaveh est membre associé de Mila – Institut québécois d'intelligence artificielle et directeur de Ciela – Institut de Montréal pour l'analyse des données astrophysiques et l'apprentissage automatique. Il est professeur adjoint au Département de physique de l'Université de Montréal, titulaire d'une chaire de recherche du Canada en analyse de données astrophysiques et apprentissage automatique, membre associé de l'Institut spatial Trottier de l'Université McGill et chercheur invité au Center for Computational Astrophysics du Flatiron Institute (New York) et au Perimeter Institute. Auparavant, il a été chercheur au Flatiron Institute (2018-2019) et boursier Hubble de la NASA à l'Université de Stanford (2013-2018).

Il est un leader mondial dans l'analyse des données astrophysiques avec l'apprentissage automatique. Ses recherches actuelles portent principalement sur l'inférence bayésienne dans l'IA (par exemple, les modèles de diffusion) et visent à faire progresser les connaissances sur la distribution de la matière noire dans les galaxies fortement lenticulaires à l'aide de données provenant de grands relevés cosmologiques. Ses recherches sont soutenues par la Schmidt Futures Foundation et la Simons Foundation.

Étudiants actuels

Stagiaire de recherche - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - McGill
Superviseur⋅e principal⋅e :
Stagiaire de recherche - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - UdeM
Stagiaire de recherche - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Stagiaire de recherche - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Stagiaire de recherche - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - McGill
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :

Publications

TEMPLATES: Characterization of a Merger in the Dusty Lensing SPT0418-47 System
Jared Cathey
Anthony H. Gonzalez
Sidney Lower
Kedar A. Phadke
Justin Spilker
Manuel Aravena
Matthew Bayliss
Jack E. Birkin
Simon Birrer
Scott Chapman
Håkon Dahle
Christopher C. Hayward
Ryley Hill
Taylor A. Hutchison
Keunho J. Kim
Guillaume Mahler
Daniel P. Marrone
Desika Narayanan
Alexander Navarre … (voir 7 de plus)
Cassie Reuter
Jane R Rigby
Keren Sharon
Manuel Solimano
Nikolaus Sulzenauer
Joaquin Vieira
David Vizgan
Interpretable Machine Learning for Finding Intermediate-mass Black Holes
Mario Pasquato
Piero Trevisan
Abbas Askar
Pablo Lemos
Gaia Carenini
Michela Mapelli
Searching for Strong Gravitational Lenses
Cameron Lemon
Frederic Courbin
Anupreeta More
Paul Schechter
Raoul Cañameras
Ludovic Delchambre
Calvin Leung
Yiping Shu
Chiara Spiniello
Jonas Klüter
Richard G. McMahon
PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation
Pablo Lemos
Sammy N. Sharief
Nikolay Malkin
On Diffusion Modeling for Anomaly Detection
Victor Livernoche
Vineet Jain
Known for their impressive performance in generative modeling, diffusion models are attractive candidates for density-based anomaly detectio… (voir plus)n. This paper investigates different variations of diffusion modeling for unsupervised and semi-supervised anomaly detection. In particular, we find that Denoising Diffusion Probability Models (DDPM) are performant on anomaly detection benchmarks yet computationally expensive. By simplifying DDPM in application to anomaly detection, we are naturally led to an alternative approach called Diffusion Time Estimation (DTE). DTE estimates the distribution over diffusion time for a given input and uses the mode or mean of this distribution as the anomaly score. We derive an analytical form for this density and leverage a deep neural network to improve inference efficiency. Through empirical evaluations on the ADBench benchmark, we demonstrate that all diffusion-based anomaly detection methods perform competitively for both semi-supervised and unsupervised settings. Notably, DTE achieves orders of magnitude faster inference time than DDPM, while outperforming it on this benchmark. These results establish diffusion-based anomaly detection as a scalable alternative to traditional methods and recent deep-learning techniques for standard unsupervised and semi-supervised anomaly detection settings.
Extended Lyman-alpha emission towards the SPT2349-56 protocluster at $z=4.3$
Yordanka Apostolovski
Manuel Aravena
Timo Anguita
Matthieu Béthermin
James R. Burgoyne
Scott Chapman
C. Breuck
Anthony R Gonzalez
Max Gronke
Lucia Guaita
Ryley Hill
Sreevani Jarugula
E. Johnston
M. Malkan
Desika Narayanan
Cassie Reuter
Manuel Solimano
Justin Spilker
Nikolaus Sulzenauer … (voir 5 de plus)
Joaquin Vieira
Joaquin Daniel Vieira
David Vizgan
Axel Wei
Axel Weiß
Deep spectroscopic surveys with the Atacama Large Millimeter/submillimeter Array (ALMA) have revealed that some of the brightest infrared so… (voir plus)urces in the sky correspond to concentrations of submillimeter galaxies (SMGs) at high redshift. Among these, the SPT2349-56 protocluster system is amongst the most extreme examples given its high source density and integrated star formation rate. We conducted a deep Lyman-alpha line emission survey around SPT2349-56 using the Multi-Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope (VLT) in order to characterize this uniquely dense environment. Taking advantage of the deep three-dimensional nature of this survey, we performed a sensitive search for Lyman-alpha emitters (LAEs) toward the core and northern extension of the protocluster, which correspond to the brightest infrared regions in this field. Using a smoothed narrowband image extracted from the MUSE datacube around the protocluster redshift, we searched for possible extended structures. We identify only three LAEs at
Improving Gradient-guided Nested Sampling for Posterior Inference
Pablo Lemos
Will Handley
Nikolay Malkin
We present a performant, general-purpose gradient-guided nested sampling algorithm, …
Active learning meets fractal decision boundaries: a cautionary tale from the Sitnikov three-body problem
Nicolas Payot
Mario Pasquato
Alessandro A. Trani
Chaotic systems such as the gravitational N-body problem are ubiquitous in astronomy. Machine learning (ML) is increasingly deployed to pred… (voir plus)ict the evolution of such systems, e.g. with the goal of speeding up simulations. Strategies such as active Learning (AL) are a natural choice to optimize ML training. Here we showcase an AL failure when predicting the stability of the Sitnikov three-body problem, the simplest case of N-body problem displaying chaotic behavior. We link this failure to the fractal nature of our classification problem's decision boundary. This is a potential pitfall in optimizing large sets of N-body simulations via AL in the context of star cluster physics, galactic dynamics, or cosmology.
Bayesian Imaging for Radio Interferometry with Score-Based Priors
No'e Dia
M. J. Yantovski-Barth
Alexandre Adam
Micah Bowles
Pablo Lemos
A. Scaife
U. Montŕeal
Ciela Institute
Flatiron Institute
Echoes in the Noise: Posterior Samples of Faint Galaxy Surface Brightness Profiles with Score-Based Likelihoods and Priors
Alexandre Adam
Connor Stone
Connor Bottrell
Ronan Legin
Examining the detailed structure of galaxy populations provides valuable insights into their formation and evolution mechanisms. Significant… (voir plus) barriers to such analysis are the non-trivial noise properties of real astronomical images and the point spread function (PSF) which blurs structure. Here we present a framework which combines recent advances in score-based likelihood characterization and diffusion model priors to perform a Bayesian analysis of image deconvolution. The method, when applied to minimally processed \emph{Hubble Space Telescope} (\emph{HST}) data, recovers structures which have otherwise only become visible in next-generation \emph{James Webb Space Telescope} (\emph{JWST}) imaging.
Learning an Effective Evolution Equation for Particle-Mesh Simulations Across Cosmologies
Nicolas Payot
Pablo Lemos
Carolina Cuesta-lazaro
C. Modi
The search for the lost attractor
Mario Pasquato
Syphax Haddad
Pierfrancesco Di Cintio
Alexandre Adam
Pablo Lemos
No'e Dia
Mircea Petrache
Ugo Niccolo Di Carlo
Alessandro A. Trani