Portrait de Laurence Perreault-Levasseur n'est pas disponible

Laurence Perreault-Levasseur

Membre académique associé
Professeure adjointe, Université de Montréal, Département de physique
Sujets de recherche
Apprentissage profond
Modèles génératifs
Modèles probabilistes
Réseaux de neurones en graphes
Systèmes dynamiques
Vision par ordinateur

Biographie

Laurence Perreault-Levasseur est titulaire de la Chaire de recherche du Canada en cosmologie computationnelle et en intelligence artificielle. Elle est professeure adjointe à l'Université de Montréal et membre associée de Mila – Institut québécois d’intelligence artificielle, où elle mène des recherches sur le développement et l'application de méthodes d'apprentissage automatique à la cosmologie. Elle est également chercheuse invitée au Flatiron Institute, à New York. Auparavant, elle a été chargée de recherche au Center for Computational Astrophysics du Flatiron Institute et boursière postdoctorale du KIPAC à l'Université de Stanford. Laurence Perreault-Levasseur a obtenu un doctorat de l'Université de Cambridge, où elle a travaillé sur les applications des méthodes de la théorie des champs effectifs ouverts au formalisme de l'inflation. Elle est titulaire d'une licence et d'une maîtrise en sciences de l'Université McGill.

Étudiants actuels

Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Stagiaire de recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Maîtrise recherche - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - McGill
Co-superviseur⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :

Publications

The spatially-resolved effect of mergers on the stellar mass assembly of MaNGA galaxies
Eirini Angeloudi
Marc Huertas-Company
Jesús Falcón-Barroso
Alina Boecker
Predicting the Subhalo Mass Functions in Simulations from Galaxy Images
Tri Nguyen
J. Rose
Chris Lovell
Francisco Villaescusa-navarro
Strong gravitational lensing provides a powerful tool to directly infer the dark matter (DM) subhalo mass function (SHMF) in lens galaxies. … (voir plus)However, comparing observationally inferred SHMFs to theoretical predictions remains challenging, as the predicted SHMF can vary significantly between galaxies - even within the same cosmological model - due to differences in the properties and environment of individual galaxies. We present a machine learning framework to infer the galaxy-specific predicted SHMF from galaxy images, conditioned on the assumed inverse warm DM particle mass
Predicting the Subhalo Mass Functions in Simulations from Galaxy Images
Tri Nguyen
J. Rose
Chris Lovell
Francisco Villaescusa-navarro
The spatially-resolved effect of mergers on the stellar mass assembly of MaNGA galaxies
E. Angeloudi
Marc Huertas-Company
Jes'us Falc'on-Barroso
A. Boecker
Understanding the origin of stars within a galaxy - whether formed in-situ or accreted from other galaxies (ex-situ) - is key to constrainin… (voir plus)g its evolution. Spatially resolving these components provides crucial insights into a galaxy's mass assembly history. We aim to predict the spatial distribution of ex-situ stellar mass fraction in MaNGA galaxies, and to identify distinct assembly histories based on the radial gradients of these predictions in the central regions. We employ a diffusion model trained on mock MaNGA analogs (MaNGIA), derived from the TNG50 cosmological simulation. The model learns to predict the posterior distribution of resolved ex-situ stellar mass fraction maps, conditioned on stellar mass density, velocity, and velocity dispersion gradient maps. After validating the model on an unseen test set from MaNGIA, we apply it to MaNGA galaxies to infer the spatially-resolved distribution of their ex-situ stellar mass fractions - i.e. the fraction of stellar mass in each spaxel originating from mergers. We identify four broad categories of ex-situ mass distributions: flat gradient, in-situ dominated; flat gradient, ex-situ dominated; positive gradient; and negative gradient. The vast majority of MaNGA galaxies fall in the first category - flat gradients with low ex-situ fractions - confirming that in-situ star formation is the main assembly driver for low- to intermediate-mass galaxies. At high stellar masses, the ex-situ maps are more diverse, highlighting the key role of mergers in building the most massive systems. Ex-situ mass distributions correlate with morphology, star-formation activity, stellar kinematics, and environment, indicating that accretion history is a primary factor shaping massive galaxies. Finally, by tracing their assembly histories in TNG50, we link each class to distinct merger scenarios, ranging from secular evolution to merger-dominated growth.
caskade: building Pythonic scientific simulators
Massive Extremely High-Velocity Outflow in the Quasar J164653.72+243942.2
Paola Rodríguez Hidalgo
Hyunseop 현섭 Choi 최
Patrick B. Hall
Karen M. Leighly
Liliana Flores
Mikel M. Charles
Cora DeFrancesco
J. Hlavacek-Larrondo
Robustness of Neural Ratio and Posterior Estimators to Distributional Shifts for Population-Level Dark Matter Analysis in Strong Gravitational Lensing
Field-level Comparison and Robustness Analysis of Cosmological <i>N</i>-body Simulations
Adrian E. Bayer
Francisco Villaescusa-navarro
Sammy Sharief
Romain Teyssier
Lehman H. Garrison
Greg L. Bryan
Marco Gatti
Eli Visbal
Galaxy cluster characterization with machine learning techniques
M. Sadikov
J. Hlavacek-Larrondo
C. L. Rhea
M. McDonald
M. Ntampaka
J. ZuHone
We present an analysis of the X-ray properties of the galaxy cluster population in the z=0 snapshot of the IllustrisTNG simulations, utilizi… (voir plus)ng machine learning techniques to perform clustering and regression tasks. We examine five properties of the hot gas (the central cooling time, the central electron density, the central entropy excess, the concentration parameter, and the cuspiness) which are commonly used as classification metrics to identify cool core (CC), weak cool core (WCC) and non cool core (NCC) clusters of galaxies. Using mock Chandra X-ray images as inputs, we first explore an unsupervised clustering scheme to see how the resulting groups correlate with the CC/WCC/NCC classification based on the different criteria. We observe that the groups replicate almost exactly the separation of the galaxy cluster images when classifying them based on the concentration parameter. We then move on to a regression task, utilizing a ResNet model to predict the value of all five properties. The network is able to achieve a mean percentage error of 1.8% for the central cooling time, and a balanced accuracy of 0.83 on the concentration parameter, making them the best-performing metrics. Finally, we use simulation-based inference (SBI) to extract posterior distributions for the network predictions. Our neural network simultaneously predicts all five classification metrics using only mock Chandra X-ray images. This study demonstrates that machine learning is a viable approach for analyzing and classifying the large galaxy cluster datasets that will soon become available through current and upcoming X-ray surveys, such as eROSITA.
Gravitational-Wave Parameter Estimation in non-Gaussian noise using Score-Based Likelihood Characterization
Maximiliano Isi
Kaze W. K. Wong
Field-Level Comparison and Robustness Analysis of Cosmological N-Body Simulations
Adrian E. Bayer
Francisco Villaescusa-navarro
Romain Teyssier
Lehman H. Garrison
Greg L. Bryan
Marco Gatti
E. Visbal
Field-Level Comparison and Robustness Analysis of Cosmological N-Body Simulations
Adrian E. Bayer
Francisco Villaescusa-navarro
Romain Teyssier
Lehman H. Garrison
Greg L. Bryan
Marco Gatti
E. Visbal