Portrait de Laurence Perreault-Levasseur n'est pas disponible

Laurence Perreault-Levasseur

Membre académique associé
Professeure adjointe, Université de Montréal, Département de physique
Sujets de recherche
Apprentissage profond
Modèles génératifs
Modèles probabilistes
Réseaux de neurones en graphes
Systèmes dynamiques
Vision par ordinateur

Biographie

Laurence Perreault-Levasseur est titulaire de la Chaire de recherche du Canada en cosmologie computationnelle et en intelligence artificielle. Elle est professeure adjointe à l'Université de Montréal et membre associée de Mila – Institut québécois d’intelligence artificielle, où elle mène des recherches sur le développement et l'application de méthodes d'apprentissage automatique à la cosmologie. Elle est également chercheuse invitée au Flatiron Institute, à New York. Auparavant, elle a été chargée de recherche au Center for Computational Astrophysics du Flatiron Institute et boursière postdoctorale du KIPAC à l'Université de Stanford. Laurence Perreault-Levasseur a obtenu un doctorat de l'Université de Cambridge, où elle a travaillé sur les applications des méthodes de la théorie des champs effectifs ouverts au formalisme de l'inflation. Elle est titulaire d'une licence et d'une maîtrise en sciences de l'Université McGill.

Étudiants actuels

Doctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Maîtrise recherche - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Postdoctorat - McGill
Co-superviseur⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :

Publications

Improving Gradient-Guided Nested Sampling for Posterior Inference
Pablo Lemos
Nikolay Malkin
Will Handley
We present a performant, general-purpose gradient-guided nested sampling (GGNS) algorithm, combining the state of the art in differentiable … (voir plus)programming, Hamiltonian slice sampling, clustering, mode separation, dynamic nested sampling, and parallelization. This unique combination allows GGNS to scale well with dimensionality and perform competitively on a variety of synthetic and real-world problems. We also show the potential of combining nested sampling with generative flow networks to obtain large amounts of high-quality samples from the posterior distribution. This combination leads to faster mode discovery and more accurate estimates of the partition function.
Assessing the Viability of Generative Modeling in Simulated Astronomical Observations
Patrick Janulewicz
Tracy Webb
In this paper, we use methods for assessing the quality of generative models and apply them to a problem from the physical sciences. We turn… (voir plus) our attention to astrophysics, where cosmological simulations are often used to create mock observations that mimic telescope images. These simulations and their mock observations are often slow and challenging to generate, inspiring some to use generative modeling to enhance the amount of data available to study. In this work, we add realism to simulated images of galaxy clusters and use probability mass estimation to assess their fidelity compared to reality. We find that the simulations are biased compared to real observations and suggest that researchers applying generative modeling to these systems should proceed with caution.
Neural Ratio Estimators Meet Distributional Shift and Mode Misspecification: A Cautionary Tale from Strong Gravitational Lensing
In recent years, there has been increasing interest in the field of astrophysics in applying Neural Ratio Estimators (NREs) to large-scale i… (voir plus)nference problems where both amortization and marginalization over a large number of nuisance parameters are needed. Here, in order to assess the true potential of this method to produce unbiased inference on real data, we investigate the robustness of NREs to distribution shifts and model misspecification in the specific scientific application of the measurement of dark matter population-level parameters using strong gravitational lensing. We investigate the behaviour of a trained NRE for test data presenting distributional shifts inside the bounds of training, as well as out of distribution, both in the linear and non-linear parameters of this problem. While our results show that NREs perform when tested perfectly in distribution, we find that they exhibit significant biases and drawbacks when confronted with slight deviations from the examples seen in the training distribution. This indicates the necessity for caution when applying NREs to real astrophysical data, where underlying distributions are not perfectly known and models do not perfectly reconstruct the true underlying distributions.
Neural Ratio Estimators Meet Distributional Shift and Mode Misspecification: A Cautionary Tale from Strong Gravitational Lensing
In recent years, there has been increasing interest in the field of astrophysics in applying Neural Ratio Estimators (NREs) to large-scale i… (voir plus)nference problems where both amortization and marginalization over a large number of nuisance parameters are needed. Here, in order to assess the true potential of this method to produce unbiased inference on real data, we investigate the robustness of NREs to distribution shifts and model misspecification in the specific scientific application of the measurement of dark matter population-level parameters using strong gravitational lensing. We investigate the behaviour of a trained NRE for test data presenting distributional shifts inside the bounds of training, as well as out of distribution, both in the linear and non-linear parameters of this problem. While our results show that NREs perform when tested perfectly in distribution, we find that they exhibit significant biases and drawbacks when confronted with slight deviations from the examples seen in the training distribution. This indicates the necessity for caution when applying NREs to real astrophysical data, where underlying distributions are not perfectly known and models do not perfectly reconstruct the true underlying distributions.
Inpainting Galaxy Counts onto N-Body Simulations over Multiple Cosmologies and Astrophysics
Antoine Bourdin
Ronan Legin
Matthew Ho
Alexandre Adam
Multiphase Black Hole Feedback and a Bright [C ii] Halo in a LoBAL Quasar at z ∼ 6.6
Manuela Bischetti
Hyunseop Choi
Fabrizio Fiore
Chiara Feruglio
Stefano Carniani
Valentina D'Odorico
Eduardo Banados
Huanqing Chen
Roberto Decarli
Simona Gallerani
Julie Hlavacek-larrondo
Samuel Lai
K. Leighly
Chiara Mazzucchelli
Roberta Tripodi
Fabian Walter
Feige Wang
Jinyi Yang
Maria Vittoria Zanchettin … (voir 1 de plus)
Yongda Zhu
Multiphase Black Hole Feedback and a Bright [C ii] Halo in a LoBAL Quasar at z ∼ 6.6
Manuela Bischetti
Hyunseop Choi
Fabrizio Fiore
Chiara Feruglio
Stefano Carniani
Valentina D'Odorico
Eduardo Banados
Huanqing Chen
Roberto Decarli
Simona Gallerani
J. Hlavacek-Larrondo
Samuel Lai
K. Leighly
Chiara Mazzucchelli
Roberta Tripodi
Fabian Walter
Feige Wang
Jinyi Yang
Maria Vittoria Zanchettin … (voir 1 de plus)
Yongda Zhu
Multi-phase black-hole feedback and a bright [CII] halo in a Lo-BAL quasar at $z\sim6.6$
Manuela Bischetti
Hyunseop Choi
Fabrizio Fiore
Chiara Feruglio
Stefano Carniani
Valentina D'Odorico
Eduardo Banados
Huanqing Chen
Roberto Decarli
Simona Gallerani
J. Hlavacek-Larrondo
Samuel Lai
K. Leighly
Chiara Mazzucchelli
Roberta Tripodi
Fabian Walter
Feige Wang
Jinyi Yang
Maria Vittoria Zanchettin … (voir 1 de plus)
Yongda Zhu
PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation
Pablo Lemos
Sammy N. Sharief
Nikolay Malkin
We propose a comprehensive sample-based method for assessing the quality of generative models. The proposed approach enables the estimation … (voir plus)of the probability that two sets of samples are drawn from the same distribution, providing a statistically rigorous method for assessing the performance of a single generative model or the comparison of multiple competing models trained on the same dataset. This comparison can be conducted by dividing the space into non-overlapping regions and comparing the number of data samples in each region. The method only requires samples from the generative model and the test data. It is capable of functioning directly on high-dimensional data, obviating the need for dimensionality reduction. Significantly, the proposed method does not depend on assumptions regarding the density of the true distribution, and it does not rely on training or fitting any auxiliary models. Instead, it focuses on approximating the integral of the density (probability mass) across various sub-regions within the data space.
Caustics: A Python Package for Accelerated Strong Gravitational Lensing Simulations
Connor Stone
Alexandre Adam
Adam Coogan
M. J. Yantovski-Barth
Andreas Filipp
Landung Setiawan
Cordero Core
Ronan Legin
Charles Wilson
Gabriel Missael Barco
Improving Gradient-guided Nested Sampling for Posterior Inference
Pablo Lemos
Will Handley
Nikolay Malkin
We present a performant, general-purpose gradient-guided nested sampling algorithm, …
Active learning meets fractal decision boundaries: a cautionary tale from the Sitnikov three-body problem
Nicolas Payot
Mario Pasquato
Alessandro A. Trani
Chaotic systems such as the gravitational N-body problem are ubiquitous in astronomy. Machine learning (ML) is increasingly deployed to pred… (voir plus)ict the evolution of such systems, e.g. with the goal of speeding up simulations. Strategies such as active Learning (AL) are a natural choice to optimize ML training. Here we showcase an AL failure when predicting the stability of the Sitnikov three-body problem, the simplest case of N-body problem displaying chaotic behavior. We link this failure to the fractal nature of our classification problem's decision boundary. This is a potential pitfall in optimizing large sets of N-body simulations via AL in the context of star cluster physics, galactic dynamics, or cosmology.