Portrait de Laurence Perreault-Levasseur n'est pas disponible

Laurence Perreault-Levasseur

Membre académique associé
Professeure adjointe, Université de Montréal, Département de physique
Sujets de recherche
Apprentissage profond
Modèles génératifs
Modèles probabilistes
Réseaux de neurones en graphes
Systèmes dynamiques
Vision par ordinateur

Biographie

Laurence Perreault-Levasseur est titulaire de la Chaire de recherche du Canada en cosmologie computationnelle et en intelligence artificielle. Elle est professeure adjointe à l'Université de Montréal et membre associée de Mila – Institut québécois d’intelligence artificielle, où elle mène des recherches sur le développement et l'application de méthodes d'apprentissage automatique à la cosmologie. Elle est également chercheuse invitée au Flatiron Institute, à New York. Auparavant, elle a été chargée de recherche au Center for Computational Astrophysics du Flatiron Institute et boursière postdoctorale du KIPAC à l'Université de Stanford. Laurence Perreault-Levasseur a obtenu un doctorat de l'Université de Cambridge, où elle a travaillé sur les applications des méthodes de la théorie des champs effectifs ouverts au formalisme de l'inflation. Elle est titulaire d'une licence et d'une maîtrise en sciences de l'Université McGill.

Étudiants actuels

Doctorat - McGill
Superviseur⋅e principal⋅e :
Stagiaire de recherche - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Stagiaire de recherche - McGill
Co-superviseur⋅e :
Postdoctorat - UdeM
Stagiaire de recherche - UdeM
Superviseur⋅e principal⋅e :
Stagiaire de recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - McGill
Maîtrise recherche - UdeM
Stagiaire de recherche - UdeM
Superviseur⋅e principal⋅e :
Stagiaire de recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Stagiaire de recherche - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Visiteur de recherche indépendant - University of Padua
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Maîtrise recherche - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Postdoctorat - McGill
Co-superviseur⋅e :

Publications

Sampling-Based Accuracy Testing of Posterior Estimators for General Inference
Pixelated Reconstruction of Foreground Density and Background Surface Brightness in Gravitational Lensing Systems Using Recurrent Inference Machines
Alexandre Adam
Max Welling
Modeling strong gravitational lenses in order to quantify distortions in the images of background sources and to reconstruct the mass densit… (voir plus)y in foreground lenses has been a difficult computational challenge. As the quality of gravitational lens images increases, the task of fully exploiting the information they contain becomes computationally and algorithmically more difficult. In this work, we use a neural network based on the recurrent inference machine to reconstruct simultaneously an undistorted image of the background source and the lens mass density distribution as pixelated maps. The method iteratively reconstructs the model parameters (the image of the source and a pixelated density map) by learning the process of optimizing the likelihood given the data using the physical model (a ray-tracing simulation), regularized by a prior implicitly learned by the neural network through its training data. When compared to more traditional parametric models, the proposed method is significantly more expressive and can reconstruct complex mass distributions, which we demonstrate by using realistic lensing galaxies taken from the IllustrisTNG cosmological hydrodynamic simulation.
Beyond Gaussian Noise: A Generalized Approach to Likelihood Analysis with Non-Gaussian Noise
Ronan Legin
Alexandre Adam
Sampling-Based Accuracy Testing of Posterior Estimators for General Inference
A Framework for Obtaining Accurate Posteriors of Strong Gravitational Lensing Parameters with Flexible Priors and Implicit Likelihoods Using Density Estimation
Ronan Legin
Benjamin Wandelt
We report the application of implicit likelihood inference to the prediction of the macroparameters of strong lensing systems with neural ne… (voir plus)tworks. This allows us to perform deep-learning analysis of lensing systems within a well-defined Bayesian statistical framework to explicitly impose desired priors on lensing variables, obtain accurate posteriors, and guarantee convergence to the optimal posterior in the limit of perfect performance. We train neural networks to perform a regression task to produce point estimates of lensing parameters. We then interpret these estimates as compressed statistics in our inference setup and model their likelihood function using mixture density networks. We compare our results with those of approximate Bayesian neural networks, discuss their significance, and point to future directions. Based on a test set of 100,000 strong lensing simulations, our amortized model produces accurate posteriors for any arbitrary confidence interval, with a maximum percentage deviation of 1.4% at the 21.8% confidence level, without the need for any added calibration procedure. In total, inferring 100,000 different posteriors takes a day on a single GPU, showing that the method scales well to the thousands of lenses expected to be discovered by upcoming sky surveys.
GaMPEN: A Machine-learning Framework for Estimating Bayesian Posteriors of Galaxy Morphological Parameters
Aritra Ghosh
C. Urry
Amrit Rau
M. Cranmer
Kevin Schawinski
Dominic Stark
Chuan Tian
Ryan Ofman
T. Ananna
Connor Auge
Nico Cappelluti
D. Sanders
Ezequiel Treister
We introduce a novel machine-learning framework for estimating the Bayesian posteriors of morphological parameters for arbitrarily large num… (voir plus)bers of galaxies. The Galaxy Morphology Posterior Estimation Network (GaMPEN) estimates values and uncertainties for a galaxy’s bulge-to-total-light ratio (L B /L T ), effective radius (R e ), and flux (F). To estimate posteriors, GaMPEN uses the Monte Carlo Dropout technique and incorporates the full covariance matrix between the output parameters in its loss function. GaMPEN also uses a spatial transformer network (STN) to automatically crop input galaxy frames to an optimal size before determining their morphology. This will allow it to be applied to new data without prior knowledge of galaxy size. Training and testing GaMPEN on galaxies simulated to match z 0.25 galaxies in Hyper Suprime-Cam Wide g-band images, we demonstrate that GaMPEN achieves typical errors of 0.1 in L B /L T , 0.″17 (∼7%) in R e , and 6.3 × 104 nJy (∼1%) in F. GaMPEN's predicted uncertainties are well calibrated and accurate (5% deviation)—for regions of the parameter space with high residuals, GaMPEN correctly predicts correspondingly large uncertainties. We a