Portrait de Laurence Perreault-Levasseur n'est pas disponible

Laurence Perreault-Levasseur

Membre académique associé
Professeure adjointe, Université de Montréal, Département de physique
Sujets de recherche
Apprentissage profond
Modèles génératifs
Modèles probabilistes
Réseaux de neurones en graphes
Systèmes dynamiques
Vision par ordinateur

Biographie

Laurence Perreault-Levasseur est titulaire de la Chaire de recherche du Canada en cosmologie computationnelle et en intelligence artificielle. Elle est professeure adjointe à l'Université de Montréal et membre associée de Mila – Institut québécois d’intelligence artificielle, où elle mène des recherches sur le développement et l'application de méthodes d'apprentissage automatique à la cosmologie. Elle est également chercheuse invitée au Flatiron Institute, à New York. Auparavant, elle a été chargée de recherche au Center for Computational Astrophysics du Flatiron Institute et boursière postdoctorale du KIPAC à l'Université de Stanford. Laurence Perreault-Levasseur a obtenu un doctorat de l'Université de Cambridge, où elle a travaillé sur les applications des méthodes de la théorie des champs effectifs ouverts au formalisme de l'inflation. Elle est titulaire d'une licence et d'une maîtrise en sciences de l'Université McGill.

Étudiants actuels

Doctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Maîtrise recherche - UdeM
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Postdoctorat - McGill
Co-superviseur⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :

Publications

Galaxy cluster characterization with machine learning techniques
Maria Sadikov
Julie Hlavacek-larrondo
C. Rhea
Michael McDonald
Michelle Ntampaka
John ZuHone
We present an analysis of the X-ray properties of the galaxy cluster population in the z=0 snapshot of the IllustrisTNG simulations, utilizi… (voir plus)ng machine learning techniques to perform clustering and regression tasks. We examine five properties of the hot gas (the central cooling time, the central electron density, the central entropy excess, the concentration parameter, and the cuspiness) which are commonly used as classification metrics to identify cool core (CC), weak cool core (WCC) and non cool core (NCC) clusters of galaxies. Using mock Chandra X-ray images as inputs, we first explore an unsupervised clustering scheme to see how the resulting groups correlate with the CC/WCC/NCC classification based on the different criteria. We observe that the groups replicate almost exactly the separation of the galaxy cluster images when classifying them based on the concentration parameter. We then move on to a regression task, utilizing a ResNet model to predict the value of all five properties. The network is able to achieve a mean percentage error of 1.8% for the central cooling time, and a balanced accuracy of 0.83 on the concentration parameter, making them the best-performing metrics. Finally, we use simulation-based inference (SBI) to extract posterior distributions for the network predictions. Our neural network simultaneously predicts all five classification metrics using only mock Chandra X-ray images. This study demonstrates that machine learning is a viable approach for analyzing and classifying the large galaxy cluster datasets that will soon become available through current and upcoming X-ray surveys, such as eROSITA.
Galaxy cluster characterization with machine learning techniques
Maria Sadikov
Julie Hlavacek-larrondo
C. Rhea
Michael McDonald
Michelle Ntampaka
John ZuHone
We present an analysis of the X-ray properties of the galaxy cluster population in the z=0 snapshot of the IllustrisTNG simulations, utilizi… (voir plus)ng machine learning techniques to perform clustering and regression tasks. We examine five properties of the hot gas (the central cooling time, the central electron density, the central entropy excess, the concentration parameter, and the cuspiness) which are commonly used as classification metrics to identify cool core (CC), weak cool core (WCC) and non cool core (NCC) clusters of galaxies. Using mock Chandra X-ray images as inputs, we first explore an unsupervised clustering scheme to see how the resulting groups correlate with the CC/WCC/NCC classification based on the different criteria. We observe that the groups replicate almost exactly the separation of the galaxy cluster images when classifying them based on the concentration parameter. We then move on to a regression task, utilizing a ResNet model to predict the value of all five properties. The network is able to achieve a mean percentage error of 1.8% for the central cooling time, and a balanced accuracy of 0.83 on the concentration parameter, making them the best-performing metrics. Finally, we use simulation-based inference (SBI) to extract posterior distributions for the network predictions. Our neural network simultaneously predicts all five classification metrics using only mock Chandra X-ray images. This study demonstrates that machine learning is a viable approach for analyzing and classifying the large galaxy cluster datasets that will soon become available through current and upcoming X-ray surveys, such as eROSITA.
IRIS: A Bayesian Approach for Image Reconstruction in Radio Interferometry with expressive Score-Based priors
No'e Dia
M. J. Yantovski-Barth
Alexandre Adam
Micah Bowles
Anna M. M. Scaife
Inferring sky surface brightness distributions from noisy interferometric data in a principled statistical framework has been a key challeng… (voir plus)e in radio astronomy. In this work, we introduce Imaging for Radio Interferometry with Score-based models (IRIS). We use score-based models trained on optical images of galaxies as an expressive prior in combination with a Gaussian likelihood in the uv-space to infer images of protoplanetary disks from visibility data of the DSHARP survey conducted by ALMA. We demonstrate the advantages of this framework compared with traditional radio interferometry imaging algorithms, showing that it produces plausible posterior samples despite the use of a misspecified galaxy prior. Through coverage testing on simulations, we empirically evaluate the accuracy of this approach to generate calibrated posterior samples.
IRIS: A Bayesian Approach for Image Reconstruction in Radio Interferometry with expressive Score-Based priors
No'e Dia
M. J. Yantovski-Barth
Alexandre Adam
Micah Bowles
Anna M. M. Scaife
Inferring sky surface brightness distributions from noisy interferometric data in a principled statistical framework has been a key challeng… (voir plus)e in radio astronomy. In this work, we introduce Imaging for Radio Interferometry with Score-based models (IRIS). We use score-based models trained on optical images of galaxies as an expressive prior in combination with a Gaussian likelihood in the uv-space to infer images of protoplanetary disks from visibility data of the DSHARP survey conducted by ALMA. We demonstrate the advantages of this framework compared with traditional radio interferometry imaging algorithms, showing that it produces plausible posterior samples despite the use of a misspecified galaxy prior. Through coverage testing on simulations, we empirically evaluate the accuracy of this approach to generate calibrated posterior samples.
Robustness of Neural Ratio and Posterior Estimators to Distributional Shifts for Population-Level Dark Matter Analysis in Strong Gravitational Lensing
Causal Discovery in Astrophysics: Unraveling Supermassive Black Hole and Galaxy Coevolution
Zehao Jin
Mario Pasquato
Benjamin L. Davis
Tristan Deleu
Yu Luo
Changhyun Cho
Pablo Lemos
Xi 熙 Kang 康
Andrea Maccio
Correlation does not imply causation, but patterns of statistical association between variables can be exploited to infer a causal structure… (voir plus) (even with purely observational data) with the burgeoning field of causal discovery. As a purely observational science, astrophysics has much to gain by exploiting these new methods. The supermassive black hole (SMBH)–galaxy interaction has long been constrained by observed scaling relations, which is low-scatter correlations between variables such as SMBH mass and the central velocity dispersion of stars in a host galaxy's bulge. This study, using advanced causal discovery techniques and an up-to-date data set, reveals a causal link between galaxy properties and dynamically measured SMBH masses. We apply a score-based Bayesian framework to compute the exact conditional probabilities of every causal structure that could possibly describe our galaxy sample. With the exact posterior distribution, we determine the most likely causal structures and notice a probable causal reversal when separating galaxies by morphology. In elliptical galaxies, bulge properties (built from major mergers) tend to influence SMBH growth, while, in spiral galaxies, SMBHs are seen to affect host galaxy properties, potentially through feedback in gas-rich environments. For spiral galaxies, SMBHs progressively quench star formation, whereas, in elliptical galaxies, quenching is complete, and the causal connection has reversed. Our findings support theoretical models of hierarchical assembly of galaxies and active galactic nuclei feedback regulating galaxy evolution. Our study suggests the potentiality for further exploration of causal links in astrophysical and cosmological scaling relations, as well as any other observational science.
Causal Discovery in Astrophysics: Unraveling Supermassive Black Hole and Galaxy Coevolution
Zehao Jin
Mario Pasquato
Benjamin L. Davis
Tristan Deleu
Yu Luo
Changhyun Cho
Pablo Lemos
Xi 熙 Kang 康
Andrea Maccio
Correlation does not imply causation, but patterns of statistical association between variables can be exploited to infer a causal structure… (voir plus) (even with purely observational data) with the burgeoning field of causal discovery. As a purely observational science, astrophysics has much to gain by exploiting these new methods. The supermassive black hole (SMBH)–galaxy interaction has long been constrained by observed scaling relations, which is low-scatter correlations between variables such as SMBH mass and the central velocity dispersion of stars in a host galaxy's bulge. This study, using advanced causal discovery techniques and an up-to-date data set, reveals a causal link between galaxy properties and dynamically measured SMBH masses. We apply a score-based Bayesian framework to compute the exact conditional probabilities of every causal structure that could possibly describe our galaxy sample. With the exact posterior distribution, we determine the most likely causal structures and notice a probable causal reversal when separating galaxies by morphology. In elliptical galaxies, bulge properties (built from major mergers) tend to influence SMBH growth, while, in spiral galaxies, SMBHs are seen to affect host galaxy properties, potentially through feedback in gas-rich environments. For spiral galaxies, SMBHs progressively quench star formation, whereas, in elliptical galaxies, quenching is complete, and the causal connection has reversed. Our findings support theoretical models of hierarchical assembly of galaxies and active galactic nuclei feedback regulating galaxy evolution. Our study suggests the potentiality for further exploration of causal links in astrophysical and cosmological scaling relations, as well as any other observational science.
Causal Discovery in Astrophysics: Unraveling Supermassive Black Hole and Galaxy Coevolution
Zehao Jin
Mario Pasquato
Benjamin L. Davis
Tristan Deleu
Yu Luo
Changhyun Cho
Pablo Lemos
Xi Kang
Andrea Maccio
Correlation does not imply causation, but patterns of statistical association between variables can be exploited to infer a causal structure… (voir plus) (even with purely observational data) with the burgeoning field of causal discovery. As a purely observational science, astrophysics has much to gain by exploiting these new methods. The supermassive black hole (SMBH)--galaxy interaction has long been constrained by observed scaling relations, that is low-scatter correlations between variables such as SMBH mass and the central velocity dispersion of stars in a host galaxy's bulge. This study, using advanced causal discovery techniques and an up-to-date dataset, reveals a causal link between galaxy properties and dynamically-measured SMBH masses. We apply a score-based Bayesian framework to compute the exact conditional probabilities of every causal structure that could possibly describe our galaxy sample. With the exact posterior distribution, we determine the most likely causal structures and notice a probable causal reversal when separating galaxies by morphology. In elliptical galaxies, bulge properties (built from major mergers) tend to influence SMBH growth, while in spiral galaxies, SMBHs are seen to affect host galaxy properties, potentially through feedback in gas-rich environments. For spiral galaxies, SMBHs progressively quench star formation, whereas in elliptical galaxies, quenching is complete, and the causal connection has reversed. Our findings support theoretical models of hierarchical assembly of galaxies and active galactic nuclei feedback regulating galaxy evolution. Our study suggests the potentiality for further exploration of causal links in astrophysical and cosmological scaling relations, as well as any other observational science.
Deconvolving X-ray Galaxy Cluster Spectra Using a Recurrent Inference Machine
C. L. Rhea
J. Hlavacek-Larrondo
Alexandre Adam
Ralph P. Kraft
Ákos Bogdán
Marine Prunier
Recent advances in machine learning algorithms have unlocked new insights in observational astronomy by allowing astronomers to probe new fr… (voir plus)ontiers. In this article, we present a methodology to disentangle the intrinsic X-ray spectrum of galaxy clusters from the instrumental response function. Employing state-of-the-art modeling software and data mining techniques of the Chandra data archive, we construct a set of 100,000 mock Chandra spectra. We train a recurrent inference machine (RIM) to take in the instrumental response and mock observation and output the intrinsic X-ray spectrum. The RIM can recover the mock intrinsic spectrum below the 1-
Strong gravitational lensing as a probe of dark matter
Simona Vegetti
Simon Birrer
Giulia Despali
C. Fassnacht
Daniel A. Gilman
L.
J. McKean
D. Powell
Conor M. O'riordan
G.
Vernardos
Dark matter structures within strong gravitational lens galaxies and along their line of sight leave a gravitational imprint on the multiple… (voir plus) images of lensed sources. Strong gravitational lensing provides, therefore, a key test of different dark matter models in a way that is independent of the baryonic content of matter structures on subgalactic scales. In this chapter, we describe how galaxy-scale strong gravitational lensing observations are sensitive to the physical nature of dark matter. We provide a historical perspective of the field, and review its current status. We discuss the challenges and advances in terms of data, treatment of systematic errors and theoretical predictions, that will enable one to deliver a stringent and robust test of different dark matter models in the near future. With the advent of the next generation of sky surveys, the number of known strong gravitational lens systems is expected to increase by several orders of magnitude. Coupled with high-resolution follow-up observations, these data will provide a key opportunity to constrain the properties of dark matter with strong gravitational lensing.
Improving Gradient-Guided Nested Sampling for Posterior Inference
Pablo Lemos
Nikolay Malkin
Will Handley
We present a performant, general-purpose gradient-guided nested sampling (GGNS) algorithm, combining the state of the art in differentiable … (voir plus)programming, Hamiltonian slice sampling, clustering, mode separation, dynamic nested sampling, and parallelization. This unique combination allows GGNS to scale well with dimensionality and perform competitively on a variety of synthetic and real-world problems. We also show the potential of combining nested sampling with generative flow networks to obtain large amounts of high-quality samples from the posterior distribution. This combination leads to faster mode discovery and more accurate estimates of the partition function.
Assessing the Viability of Generative Modeling in Simulated Astronomical Observations
Patrick Janulewicz
Tracy Webb
In this paper, we use methods for assessing the quality of generative models and apply them to a problem from the physical sciences. We turn… (voir plus) our attention to astrophysics, where cosmological simulations are often used to create mock observations that mimic telescope images. These simulations and their mock observations are often slow and challenging to generate, inspiring some to use generative modeling to enhance the amount of data available to study. In this work, we add realism to simulated images of galaxy clusters and use probability mass estimation to assess their fidelity compared to reality. We find that the simulations are biased compared to real observations and suggest that researchers applying generative modeling to these systems should proceed with caution.