Portrait of Laurence Perreault-Levasseur is unavailable

Laurence Perreault-Levasseur

Associate Academic Member
Assistant Professor, Université de Montréal, Department of Physics
Research Topics
Computer Vision
Deep Learning
Dynamical Systems
Generative Models
Graph Neural Networks
Probabilistic Models

Biography

Laurence Perreault-Levasseur is the Canada Research Chair in Computational Cosmology and Artificial Intelligence. She is an assistant professor at Université de Montréal and an associate academic member of Mila – Quebec Artificial Intelligence Institute. Perreault-Levasseur’s research focuses on the development and application of machine learning methods to cosmology.

She is also a Visiting Scholar at the Flatiron Institute in New York City. Prior to that, she was a research fellow at their Center for Computational Astrophysics, and a KIPAC postdoctoral fellow at Stanford University.

For her PhD degree at the University of Cambridge, she worked on applications of open effective field theory methods to the formalism of inflation. She completed her BSc and MSc degrees at McGill University.

Current Students

PhD - Université de Montréal
PhD - McGill University
Principal supervisor :
Research Intern - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Research Intern - McGill University
Co-supervisor :
Postdoctorate - Université de Montréal
Research Intern - Université de Montréal
Principal supervisor :
Research Intern - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
Master's Research - McGill University
Master's Research - Université de Montréal
Research Intern - Université de Montréal
Principal supervisor :
Research Intern - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Co-supervisor :
Research Intern - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Independent visiting researcher - University of Padua
Master's Research - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal
Master's Research - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Co-supervisor :
Postdoctorate - McGill University
Co-supervisor :
Postdoctorate - Université de Montréal
Co-supervisor :

Publications

PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation
Pablo Lemos
Sammy N. Sharief
Nikolay Malkin
Improving Gradient-guided Nested Sampling for Posterior Inference
Pablo Lemos
Will Handley
Nikolay Malkin
We present a performant, general-purpose gradient-guided nested sampling algorithm, …
Active learning meets fractal decision boundaries: a cautionary tale from the Sitnikov three-body problem
Nicolas Payot
Mario Pasquato
Alessandro A. Trani
Chaotic systems such as the gravitational N-body problem are ubiquitous in astronomy. Machine learning (ML) is increasingly deployed to pred… (see more)ict the evolution of such systems, e.g. with the goal of speeding up simulations. Strategies such as active Learning (AL) are a natural choice to optimize ML training. Here we showcase an AL failure when predicting the stability of the Sitnikov three-body problem, the simplest case of N-body problem displaying chaotic behavior. We link this failure to the fractal nature of our classification problem's decision boundary. This is a potential pitfall in optimizing large sets of N-body simulations via AL in the context of star cluster physics, galactic dynamics, or cosmology.
Bayesian Imaging for Radio Interferometry with Score-Based Priors
No'e Dia
M. J. Yantovski-Barth
Alexandre Adam
Micah Bowles
Pablo Lemos
A. Scaife
U. Montŕeal
Ciela Institute
Flatiron Institute
Echoes in the Noise: Posterior Samples of Faint Galaxy Surface Brightness Profiles with Score-Based Likelihoods and Priors
Alexandre Adam
Connor Stone
Connor Bottrell
Ronan Legin
Examining the detailed structure of galaxy populations provides valuable insights into their formation and evolution mechanisms. Significant… (see more) barriers to such analysis are the non-trivial noise properties of real astronomical images and the point spread function (PSF) which blurs structure. Here we present a framework which combines recent advances in score-based likelihood characterization and diffusion model priors to perform a Bayesian analysis of image deconvolution. The method, when applied to minimally processed \emph{Hubble Space Telescope} (\emph{HST}) data, recovers structures which have otherwise only become visible in next-generation \emph{James Webb Space Telescope} (\emph{JWST}) imaging.
Learning an Effective Evolution Equation for Particle-Mesh Simulations Across Cosmologies
Nicolas Payot
Pablo Lemos
Carolina Cuesta-lazaro
C. Modi
Unraveling the Mysteries of Galaxy Clusters: Recurrent Inference Deconvolution of X-ray Spectra
C. Rhea
Julie Hlavacek-larrondo
Ralph P. Kraft
Ákos Bogdán
Alexandre Adam
The search for the lost attractor
Mario Pasquato
Syphax Haddad
Pierfrancesco Di Cintio
Alexandre Adam
Pablo Lemos
No'e Dia
Mircea Petrache
Ugo Niccolo Di Carlo
Alessandro A. Trani
Score-Based Likelihood Characterization for Inverse Problems in the Presence of Non-Gaussian Noise
Ronan Legin
Alexandre Adam
Likelihood analysis is typically limited to normally distributed noise due to the difficulty of determining the probability density function… (see more) of complex, high-dimensional, non-Gaussian, and anisotropic noise. This work presents Score-based LIkelihood Characterization (SLIC), a framework that resolves this issue by building a data-driven noise model using a set of noise realizations from observations. We show that the approach produces unbiased and precise likelihoods even in the presence of highly non-Gaussian correlated and spatially varying noise. We use diffusion generative models to estimate the gradient of the probability density of noise with respect to data elements. In combination with the Jacobian of the physical model of the signal, we use Langevin sampling to produce independent samples from the unbiased likelihood. We demonstrate the effectiveness of the method using real data from the Hubble Space Telescope and James Webb Space Telescope.
Posterior Sampling of the Initial Conditions of the Universe from Non-linear Large Scale Structures using Score-Based Generative Models
Ronan Legin
Matthew Ho
Pablo Lemos
Shirley Ho
Benjamin Wandelt
Time Delay Cosmography with a Neural Ratio Estimator
Eve Campeau-Poirier
Adam Coogan
We explore the use of a Neural Ratio Estimator (NRE) to determine the Hubble constant (…
Lie Point Symmetry and Physics-Informed Networks
Tara Akhound-Sadegh
Johannes Brandstetter
Max Welling
Symmetries have been leveraged to improve the generalization of neural networks through different mechanisms from data augmentation to equiv… (see more)ariant architectures. However, despite their potential, their integration into neural solvers for partial differential equations (PDEs) remains largely unexplored. We explore the integration of PDE symmetries, known as Lie point symmetries, in a major family of neural solvers known as physics-informed neural networks (PINNs). We propose a loss function that informs the network about Lie point symmetries in the same way that PINN models try to enforce the underlying PDE through a loss function. Intuitively, our symmetry loss ensures that the infinitesimal generators of the Lie group conserve the PDE solutions.. Effectively, this means that once the network learns a solution, it also learns the neighbouring solutions generated by Lie point symmetries. Empirical evaluations indicate that the inductive bias introduced by the Lie point symmetries of the PDEs greatly boosts the sample efficiency of PINNs.