Portrait of Laurence Perreault-Levasseur is unavailable

Laurence Perreault-Levasseur

Associate Academic Member
Assistant Professor, Université de Montréal, Department of Physics
Research Topics
Computer Vision
Deep Learning
Dynamical Systems
Generative Models
Graph Neural Networks
Probabilistic Models

Biography

Laurence Perreault-Levasseur is the Canada Research Chair in Computational Cosmology and Artificial Intelligence. She is an assistant professor at Université de Montréal and an associate academic member of Mila – Quebec Artificial Intelligence Institute. Perreault-Levasseur’s research focuses on the development and application of machine learning methods to cosmology.

She is also a Visiting Scholar at the Flatiron Institute in New York City. Prior to that, she was a research fellow at their Center for Computational Astrophysics, and a KIPAC postdoctoral fellow at Stanford University.

For her PhD degree at the University of Cambridge, she worked on applications of open effective field theory methods to the formalism of inflation. She completed her BSc and MSc degrees at McGill University.

Current Students

PhD - Université de Montréal
PhD - McGill University
Principal supervisor :
Master's Research - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Research Intern - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Master's Research - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Master's Research - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Postdoctorate - McGill University
Co-supervisor :
Postdoctorate - Université de Montréal
Co-supervisor :

Publications

Multiphase Black Hole Feedback and a Bright [C ii] Halo in a LoBAL Quasar at z ∼ 6.6
Manuela Bischetti
Hyunseop Choi
Fabrizio Fiore
Chiara Feruglio
Stefano Carniani
Valentina D'Odorico
Eduardo Banados
Huanqing Chen
Roberto Decarli
Simona Gallerani
Samuel Lai
K. Leighly
Chiara Mazzucchelli
Roberta Tripodi
Fabian Walter
Feige Wang
Jinyi Yang
Maria Vittoria Zanchettin … (see 1 more)
Yongda Zhu
Multiphase Black Hole Feedback and a Bright [C ii] Halo in a LoBAL Quasar at z ∼ 6.6
Manuela Bischetti
Hyunseop 현섭 Choi 최
Fabrizio Fiore
Chiara Feruglio
Stefano Carniani
Valentina D'Odorico
Eduardo Banados
Huanqing Chen
Roberto Decarli
Simona Gallerani
J. Hlavacek-Larrondo
Samuel Lai
Karen M. Leighly
Chiara Mazzucchelli
Roberta Tripodi
Fabian Walter
Feige Wang
Jinyi Yang
Maria Vittoria Zanchettin … (see 1 more)
Yongda Zhu
Multi-phase black-hole feedback and a bright [CII] halo in a Lo-BAL quasar at $z\sim6.6$
Manuela Bischetti
Hyunseop 현섭 Choi 최
Fabrizio Fiore
Chiara Feruglio
Stefano Carniani
Valentina D'Odorico
Eduardo Banados
Huanqing Chen
Roberto Decarli
Simona Gallerani
J. Hlavacek-Larrondo
Samuel Lai
Karen M. Leighly
Chiara Mazzucchelli
Roberta Tripodi
Fabian Walter
Feige Wang
Jinyi Yang
Maria Vittoria Zanchettin … (see 1 more)
Yongda Zhu
PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation
We propose a comprehensive sample-based method for assessing the quality of generative models. The proposed approach enables the estimation … (see more)of the probability that two sets of samples are drawn from the same distribution, providing a statistically rigorous method for assessing the performance of a single generative model or the comparison of multiple competing models trained on the same dataset. This comparison can be conducted by dividing the space into non-overlapping regions and comparing the number of data samples in each region. The method only requires samples from the generative model and the test data. It is capable of functioning directly on high-dimensional data, obviating the need for dimensionality reduction. Significantly, the proposed method does not depend on assumptions regarding the density of the true distribution, and it does not rely on training or fitting any auxiliary models. Instead, it focuses on approximating the integral of the density (probability mass) across various sub-regions within the data space.
Caustics: A Python Package for Accelerated Strong Gravitational Lensing Simulations
M. J. Yantovski-Barth
Landung Setiawan
Cordero Core
Charles Wilson
Gabriel Missael Barco
Improving Gradient-guided Nested Sampling for Posterior Inference
We present a performant, general-purpose gradient-guided nested sampling algorithm, …
Active learning meets fractal decision boundaries: a cautionary tale from the Sitnikov three-body problem
Mario Pasquato
Alessandro A. Trani
Chaotic systems such as the gravitational N-body problem are ubiquitous in astronomy. Machine learning (ML) is increasingly deployed to pred… (see more)ict the evolution of such systems, e.g. with the goal of speeding up simulations. Strategies such as active Learning (AL) are a natural choice to optimize ML training. Here we showcase an AL failure when predicting the stability of the Sitnikov three-body problem, the simplest case of N-body problem displaying chaotic behavior. We link this failure to the fractal nature of our classification problem's decision boundary. This is a potential pitfall in optimizing large sets of N-body simulations via AL in the context of star cluster physics, galactic dynamics, or cosmology.
Bayesian Imaging for Radio Interferometry with Score-Based Priors
No'e Dia
M. J. Yantovski-Barth
Micah Bowles
A. Scaife
U. Montŕeal
Ciela Institute
Flatiron Institute
Learning an Effective Evolution Equation for Particle-Mesh Simulations Across Cosmologies
Unraveling the Mysteries of Galaxy Clusters: Recurrent Inference Deconvolution of X-ray Spectra
C. L. Rhea
J. Hlavacek-Larrondo
Ralph P. Kraft
Ákos Bogdán
The search for the lost attractor
Mario Pasquato
Syphax Haddad
Pierfrancesco Di Cintio
No'e Dia
Mircea Petrache
Ugo Niccolo Di Carlo
Alessandro A. Trani
Score-Based Likelihood Characterization for Inverse Problems in the Presence of Non-Gaussian Noise
Likelihood analysis is typically limited to normally distributed noise due to the difficulty of determining the probability density function… (see more) of complex, high-dimensional, non-Gaussian, and anisotropic noise. This work presents Score-based LIkelihood Characterization (SLIC), a framework that resolves this issue by building a data-driven noise model using a set of noise realizations from observations. We show that the approach produces unbiased and precise likelihoods even in the presence of highly non-Gaussian correlated and spatially varying noise. We use diffusion generative models to estimate the gradient of the probability density of noise with respect to data elements. In combination with the Jacobian of the physical model of the signal, we use Langevin sampling to produce independent samples from the unbiased likelihood. We demonstrate the effectiveness of the method using real data from the Hubble Space Telescope and James Webb Space Telescope.