Portrait de Yashar Hezaveh

Yashar Hezaveh

Membre académique associé
Professeur adjoint, Université de Montréal, Département de physique
Sujets de recherche
Apprentissage de représentations
Apprentissage profond
Vision par ordinateur

Biographie

Yashar Hezaveh est membre associé de Mila – Institut québécois d'intelligence artificielle et directeur de Ciela – Institut de Montréal pour l'analyse des données astrophysiques et l'apprentissage automatique. Il est professeur adjoint au Département de physique de l'Université de Montréal, titulaire d'une chaire de recherche du Canada en analyse de données astrophysiques et apprentissage automatique, membre associé de l'Institut spatial Trottier de l'Université McGill et chercheur invité au Center for Computational Astrophysics du Flatiron Institute (New York) et au Perimeter Institute. Auparavant, il a été chercheur au Flatiron Institute (2018-2019) et boursier Hubble de la NASA à l'Université de Stanford (2013-2018).

Il est un leader mondial dans l'analyse des données astrophysiques avec l'apprentissage automatique. Ses recherches actuelles portent principalement sur l'inférence bayésienne dans l'IA (par exemple, les modèles de diffusion) et visent à faire progresser les connaissances sur la distribution de la matière noire dans les galaxies fortement lenticulaires à l'aide de données provenant de grands relevés cosmologiques. Ses recherches sont soutenues par la Schmidt Futures Foundation et la Simons Foundation.

Étudiants actuels

Stagiaire de recherche - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - McGill
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill
Postdoctorat - McGill
Superviseur⋅e principal⋅e :
Postdoctorat - UdeM
Co-superviseur⋅e :
Postdoctorat - UdeM
Superviseur⋅e principal⋅e :

Publications

Caustics: A Python Package for Accelerated Strong Gravitational Lensing Simulations
Connor Stone
Alexandre Adam
Adam Coogan
M. J. Yantovski-Barth
Andreas Filipp
Landung Setiawan
Cordero Core
Ronan Legin
Charles Wilson
Gabriel Missael Barco
Extended Lyman-alpha emission towards the SPT2349-56 protocluster at $z=4.3$
Yordanka Apostolovski
Manuel Aravena
Timo Anguita
Matthieu Béthermin
James R. Burgoyne
Scott Chapman
C. Breuck
Anthony R Gonzalez
Max Gronke
Lucia Guaita
Ryley Hill
Sreevani Jarugula
E. Johnston
M. Malkan
Desika Narayanan
Cassie Reuter
Manuel Solimano
Justin Spilker
Nikolaus Sulzenauer … (voir 3 de plus)
Joaquin Vieira
David Vizgan
Axel Weiß
Deep spectroscopic surveys with the Atacama Large Millimeter/submillimeter Array (ALMA) have revealed that some of the brightest infrared so… (voir plus)urces in the sky correspond to concentrations of submillimeter galaxies (SMGs) at high redshift. Among these, the SPT2349-56 protocluster system is amongst the most extreme examples given its high source density and integrated star formation rate. We conducted a deep Lyman-alpha line emission survey around SPT2349-56 using the Multi-Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope (VLT) in order to characterize this uniquely dense environment. Taking advantage of the deep three-dimensional nature of this survey, we performed a sensitive search for Lyman-alpha emitters (LAEs) toward the core and northern extension of the protocluster, which correspond to the brightest infrared regions in this field. Using a smoothed narrowband image extracted from the MUSE datacube around the protocluster redshift, we searched for possible extended structures. We identify only three LAEs at
Improving Gradient-guided Nested Sampling for Posterior Inference
Pablo Lemos
Will Handley
Nikolay Malkin
We present a performant, general-purpose gradient-guided nested sampling algorithm, …
Active learning meets fractal decision boundaries: a cautionary tale from the Sitnikov three-body problem
Nicolas Payot
Mario Pasquato
Alessandro A. Trani
Chaotic systems such as the gravitational N-body problem are ubiquitous in astronomy. Machine learning (ML) is increasingly deployed to pred… (voir plus)ict the evolution of such systems, e.g. with the goal of speeding up simulations. Strategies such as active Learning (AL) are a natural choice to optimize ML training. Here we showcase an AL failure when predicting the stability of the Sitnikov three-body problem, the simplest case of N-body problem displaying chaotic behavior. We link this failure to the fractal nature of our classification problem's decision boundary. This is a potential pitfall in optimizing large sets of N-body simulations via AL in the context of star cluster physics, galactic dynamics, or cosmology.
Bayesian Imaging for Radio Interferometry with Score-Based Priors
No'e Dia
M. J. Yantovski-Barth
Alexandre Adam
Micah Bowles
Pablo Lemos
A. Scaife
U. Montŕeal
Ciela Institute
Flatiron Institute
Echoes in the Noise: Posterior Samples of Faint Galaxy Surface Brightness Profiles with Score-Based Likelihoods and Priors
Alexandre Adam
Connor Stone
Connor Bottrell
Ronan Legin
Examining the detailed structure of galaxy populations provides valuable insights into their formation and evolution mechanisms. Significant… (voir plus) barriers to such analysis are the non-trivial noise properties of real astronomical images and the point spread function (PSF) which blurs structure. Here we present a framework which combines recent advances in score-based likelihood characterization and diffusion model priors to perform a Bayesian analysis of image deconvolution. The method, when applied to minimally processed \emph{Hubble Space Telescope} (\emph{HST}) data, recovers structures which have otherwise only become visible in next-generation \emph{James Webb Space Telescope} (\emph{JWST}) imaging.
Learning an Effective Evolution Equation for Particle-Mesh Simulations Across Cosmologies
Nicolas Payot
Pablo Lemos
Carolina Cuesta-lazaro
C. Modi
The search for the lost attractor
Mario Pasquato
Syphax Haddad
Pierfrancesco Di Cintio
Alexandre Adam
Pablo Lemos
No'e Dia
Mircea Petrache
Ugo Niccolo Di Carlo
Alessandro A. Trani
Score-Based Likelihood Characterization for Inverse Problems in the Presence of Non-Gaussian Noise
Ronan Legin
Alexandre Adam
Likelihood analysis is typically limited to normally distributed noise due to the difficulty of determining the probability density function… (voir plus) of complex, high-dimensional, non-Gaussian, and anisotropic noise. This work presents Score-based LIkelihood Characterization (SLIC), a framework that resolves this issue by building a data-driven noise model using a set of noise realizations from observations. We show that the approach produces unbiased and precise likelihoods even in the presence of highly non-Gaussian correlated and spatially varying noise. We use diffusion generative models to estimate the gradient of the probability density of noise with respect to data elements. In combination with the Jacobian of the physical model of the signal, we use Langevin sampling to produce independent samples from the unbiased likelihood. We demonstrate the effectiveness of the method using real data from the Hubble Space Telescope and James Webb Space Telescope.
Posterior Sampling of the Initial Conditions of the Universe from Non-linear Large Scale Structures using Score-Based Generative Models
Ronan Legin
Matthew Ho
Pablo Lemos
Shirley Ho
Benjamin Wandelt
Time Delay Cosmography with a Neural Ratio Estimator
Eve Campeau-Poirier
Adam Coogan
We explore the use of a Neural Ratio Estimator (NRE) to determine the Hubble constant (…
AstroPhot: Fitting Everything Everywhere All at Once in Astronomical Images
Connor J Stone
Stéphane Courteau
Jean-Charles Cuillandre
Nikhil Arora