Portrait de Shenyang Huang

Shenyang Huang

Collaborateur·rice alumni - McGill
Superviseur⋅e principal⋅e
Co-supervisor
Sujets de recherche
Apprentissage profond
Apprentissage spectral
Exploration des données
Modélisation moléculaire
Réseaux de neurones en graphes

Publications

Scalable Change Point Detection for Dynamic Graphs
Real world networks often evolve in complex ways over time. Understanding anomalies in dynamic networks is crucial for applications such as … (voir plus)traffic accident detection, intrusion identification and detection of ecosystem disturbances. In this work, we focus on the problem of change point detection in dynamic graphs. The goal is to identify time steps where the graph structure deviates significantly from the norm. Despite empirical success of recent methods, building a change point detection method for real world dynamic graphs, which often scale to millions of nodes, remains an open question. To fill this gap, we propose LADdos, a scalable method for change point detection in dynamic graphs. LADdos brings together ideas from two recent works: an accurate change point detection method for graphs called LAD [10] which detects the changes in the full Laplacian spectrum of the graph in each timestamp, and the general framework of network density of states (DOS) [5] which models the distribution of the singular values through efficient approximation methods. In experiments with two common graph models –the Stochastic Block Model (SBM) and the Barabási-Albert (BA) model – we show that LADdos has equal performance to LAD, which is the current state-of-the-art, while being orders of magnitude faster. For instance, on a dynamic graph with total 21 million edges over 150 timestamps, LADdos achieves 100x speedup when compared to LAD.
Contact Graph Epidemic Modelling of COVID-19 for Transmission and Intervention Strategies
Abby Leung
Xiaoye Ding
The coronavirus disease 2019 (COVID-19) pandemic has quickly become a global public health crisis unseen in recent years. It is known that t… (voir plus)he structure of the human contact network plays an important role in the spread of transmissible diseases. In this work, we study a structure aware model of COVID-19 CGEM. This model becomes similar to the classical compartment-based models in epidemiology if we assume the contact network is a Erdos-Renyi (ER) graph, i.e. everyone comes into contact with everyone else with the same probability. In contrast, CGEM is more expressive and allows for plugging in the actual contact networks, or more realistic proxies for it. Moreover, CGEM enables more precise modelling of enforcing and releasing different non-pharmaceutical intervention (NPI) strategies. Through a set of extensive experiments, we demonstrate significant differences between the epidemic curves when assuming different underlying structures. More specifically we demonstrate that the compartment-based models are overestimating the spread of the infection by a factor of 3, and under some realistic assumptions on the compliance factor, underestimating the effectiveness of some of NPIs, mischaracterizing others (e.g. predicting a later peak), and underestimating the scale of the second peak after reopening.
Laplacian Change Point Detection for Dynamic Graphs
RandomNet: Towards Fully Automatic Neural Architecture Design for Multimodal Learning
Stefano Alletto
Vincent Francois-Lavet
Yohei Nakata
Almost all neural architecture search methods are evaluated in terms of performance (i.e. test accuracy) of the model structures that it fin… (voir plus)ds. Should it be the only metric for a good autoML approach? To examine aspects beyond performance, we propose a set of criteria aimed at evaluating the core of autoML problem: the amount of human intervention required to deploy these methods into real world scenarios. Based on our proposed evaluation checklist, we study the effectiveness of a random search strategy for fully automated multimodal neural architecture search. Compared to traditional methods that rely on manually crafted feature extractors, our method selects each modality from a large search space with minimal human supervision. We show that our proposed random search strategy performs close to the state of the art on the AV-MNIST dataset while meeting the desirable characteristics for a fully automated design process.
Neural Architecture Search for Class-incremental Learning
Vincent Francois-Lavet
In class-incremental learning, a model learns continuously from a sequential data stream in which new classes occur. Existing methods often … (voir plus)rely on static architectures that are manually crafted. These methods can be prone to capacity saturation because a neural network's ability to generalize to new concepts is limited by its fixed capacity. To understand how to expand a continual learner, we focus on the neural architecture design problem in the context of class-incremental learning: at each time step, the learner must optimize its performance on all classes observed so far by selecting the most competitive neural architecture. To tackle this problem, we propose Continual Neural Architecture Search (CNAS): an autoML approach that takes advantage of the sequential nature of class-incremental learning to efficiently and adaptively identify strong architectures in a continual learning setting. We employ a task network to perform the classification task and a reinforcement learning agent as the meta-controller for architecture search. In addition, we apply network transformations to transfer weights from previous learning step and to reduce the size of the architecture search space, thus saving a large amount of computational resources. We evaluate CNAS on the CIFAR-100 dataset under varied incremental learning scenarios with limited computational power (1 GPU). Experimental results demonstrate that CNAS outperforms architectures that are optimized for the entire dataset. In addition, CNAS is at least an order of magnitude more efficient than naively using existing autoML methods.