Portrait of Vincent François-Lavet is unavailable

Vincent François-Lavet

Alumni

Publications

Understanding Capacity Saturation in Incremental Learning
Handling Black Swan Events in Deep Learning with Diversely Extrapolated Neural Networks
By virtue of their expressive power, neural networks (NNs) are well suited to fitting large, complex datasets, yet they are also known to … (see more)produce similar predictions for points outside the training distribution. As such, they are, like humans, under the influence of the Black Swan theory: models tend to be extremely "surprised" by rare events, leading to potentially disastrous consequences, while justifying these same events in hindsight. To avoid this pitfall, we introduce DENN, an ensemble approach building a set of Diversely Extrapolated Neural Networks that fits the training data and is able to generalize more diversely when extrapolating to novel data points. This leads DENN to output highly uncertain predictions for unexpected inputs. We achieve this by adding a diversity term in the loss function used to train the model, computed at specific inputs. We first illustrate the usefulness of the method on a low-dimensional regression problem. Then, we show how the loss can be adapted to tackle anomaly detection during classification, as well as safe imitation learning problems.
On Overfitting and Asymptotic Bias in Batch Reinforcement Learning with Partial Observability (Extended Abstract)
When an agent has limited information on its environment, the suboptimality of an RL algorithm can be decomposed into the sum of two terms: … (see more)a term related to an asymptotic bias (suboptimality with unlimited data) and a term due to overfitting (additional suboptimality due to limited data). In the context of reinforcement learning with partial observability, this paper provides an analysis of the tradeoff between these two error sources. In particular, our theoretical analysis formally characterizes how a smaller state representation increases the asymptotic bias while decreasing the risk of overfitting.
RandomNet: Towards Fully Automatic Neural Architecture Design for Multimodal Learning
Almost all neural architecture search methods are evaluated in terms of performance (i.e. test accuracy) of the model structures that it fin… (see more)ds. Should it be the only metric for a good autoML approach? To examine aspects beyond performance, we propose a set of criteria aimed at evaluating the core of autoML problem: the amount of human intervention required to deploy these methods into real world scenarios. Based on our proposed evaluation checklist, we study the effectiveness of a random search strategy for fully automated multimodal neural architecture search. Compared to traditional methods that rely on manually crafted feature extractors, our method selects each modality from a large search space with minimal human supervision. We show that our proposed random search strategy performs close to the state of the art on the AV-MNIST dataset while meeting the desirable characteristics for a fully automated design process.
Neural Architecture Search for Class-incremental Learning
In class-incremental learning, a model learns continuously from a sequential data stream in which new classes occur. Existing methods often … (see more)rely on static architectures that are manually crafted. These methods can be prone to capacity saturation because a neural network's ability to generalize to new concepts is limited by its fixed capacity. To understand how to expand a continual learner, we focus on the neural architecture design problem in the context of class-incremental learning: at each time step, the learner must optimize its performance on all classes observed so far by selecting the most competitive neural architecture. To tackle this problem, we propose Continual Neural Architecture Search (CNAS): an autoML approach that takes advantage of the sequential nature of class-incremental learning to efficiently and adaptively identify strong architectures in a continual learning setting. We employ a task network to perform the classification task and a reinforcement learning agent as the meta-controller for architecture search. In addition, we apply network transformations to transfer weights from previous learning step and to reduce the size of the architecture search space, thus saving a large amount of computational resources. We evaluate CNAS on the CIFAR-100 dataset under varied incremental learning scenarios with limited computational power (1 GPU). Experimental results demonstrate that CNAS outperforms architectures that are optimized for the entire dataset. In addition, CNAS is at least an order of magnitude more efficient than naively using existing autoML methods.
Combined Reinforcement Learning via Abstract Representations
In the quest for efficient and robust reinforcement learning methods, both model-free and model-based approaches offer advantages. In this p… (see more)aper we propose a new way of explicitly bridging both approaches via a shared low-dimensional learned encoding of the environment, meant to capture summarizing abstractions. We show that the modularity brought by this approach leads to good generalization while being computationally efficient, with planning happening in a smaller latent state space. In addition, this approach recovers a sufficient low-dimensional representation of the environment, which opens up new strategies for interpretable AI, exploration and transfer learning.
Optimizing Home Energy Management and Electric Vehicle Charging with Reinforcement Learning
Smart grids are advancing the management efficiency and security of power grids with the integration of energy storage, distributed controll… (see more)ers, and advanced meters. In particular, with the increasing prevalence of residential automation devices and distributed renewable energy generation, residential energy management is now drawing more attention. Meanwhile, the increasing adoption of electric vehicle (EV) brings more challenges and opportunities for smart residential energy management. This paper formalizes energy management for the residential home with EV charging as a Markov Decision Process and proposes reinforcement learning (RL) based control algorithms to address it. The objective of the proposed algorithms is to minimize the long-term operating cost. We further use a recurrent neural network (RNN) to model the electricity demand as a preprocessing step. Both the RNN prediction and latent representations are used as additional state features for the RL based control algorithms. Experiments on real-world data show that the proposed algorithms can significantly reduce the operating cost and peak power consumption compared to baseline control algorithms.