We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Benoit Boulet
Administrator, Board of Directors, Mila
Associate Vice-President (Research and Innovation), McGill University
Publications
Multiple Kernel Learning-Based Transfer Regression for Electric Load Forecasting
Electric load forecasting, especially short-term load forecasting (STLF), is becoming more and more important for power system operation. We… (see more) propose to use multiple kernel learning (MKL) for residential electric load forecasting which provides more flexibility than traditional kernel methods. Computation time is an important issue for short-term forecasting, especially for energy scheduling. However, conventional MKL methods usually lead to complicated optimization problems. Another practical issue for this application is that there may be a very limited amount of data available to train a reliable forecasting model for a new house, while at the same time we may have historical data collected from other houses which can be leveraged to improve the prediction performance for the new house. In this paper, we propose a boosting-based framework for MKL regression to deal with the aforementioned issues for STLF. In particular, we first adopt boosting to learn an ensemble of multiple kernel regressors and then extend this framework to the context of transfer learning. Furthermore, we consider two different settings: homogeneous transfer learning and heterogeneous transfer learning. Experimental results on residential data sets demonstrate that forecasting error can be reduced by a large margin with the knowledge learned from other houses.
Smart grids are advancing the management efficiency and security of power grids with the integration of energy storage, distributed controll… (see more)ers, and advanced meters. In particular, with the increasing prevalence of residential automation devices and distributed renewable energy generation, residential energy management is now drawing more attention. Meanwhile, the increasing adoption of electric vehicle (EV) brings more challenges and opportunities for smart residential energy management. This paper formalizes energy management for the residential home with EV charging as a Markov Decision Process and proposes reinforcement learning (RL) based control algorithms to address it. The objective of the proposed algorithms is to minimize the long-term operating cost. We further use a recurrent neural network (RNN) to model the electricity demand as a preprocessing step. Both the RNN prediction and latent representations are used as additional state features for the RL based control algorithms. Experiments on real-world data show that the proposed algorithms can significantly reduce the operating cost and peak power consumption compared to baseline control algorithms.