Portrait de David Meger

David Meger

Membre académique associé
Professeur adjoint, McGill University, École d'informatique
Sujets de recherche
Apprentissage par renforcement
Vision par ordinateur

Biographie

David Meger est professeur adjoint à l'École d'informatique de l'Université McGill. Il codirige le Laboratoire de robotique mobile au sein du Centre sur les machines intelligentes, qui est l'un des groupes de recherche en robotique les plus importants et les plus anciens du Canada. Les travaux de recherche du professeur Meger portent notamment sur les robots à guidage visuel dotés d'une vision et d'un apprentissage actifs, sur les modèles d'apprentissage par renforcement profond qui sont largement cités et utilisés par les chercheurs et l'industrie dans le monde entier, et sur la robotique de terrain, y compris les déploiements autonomes sous l'eau et sur la terre ferme. Il a été le président général de la première conférence conjointe CS-CAN au Canada en 2023.

Étudiants actuels

Collaborateur·rice de recherche - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill
Co-superviseur⋅e :
Maîtrise recherche - McGill
Co-superviseur⋅e :
Doctorat - McGill
Superviseur⋅e principal⋅e :
Postdoctorat - McGill
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Maîtrise recherche - McGill
Doctorat - McGill
Co-superviseur⋅e :
Maîtrise recherche - McGill

Publications

Hypernetworks for Zero-shot Transfer in Reinforcement Learning
Sahand Rezaei-Shoshtari
Charlotte Morissette
Francois Hogan
In this paper, hypernetworks are trained to generate behaviors across a range of unseen task conditions, via a novel TD-based training objec… (voir plus)tive and data from a set of near-optimal RL solutions for training tasks. This work relates to meta RL, contextual RL, and transfer learning, with a particular focus on zero-shot performance at test time, enabled by knowledge of the task parameters (also known as context). Our technical approach is based upon viewing each RL algorithm as a mapping from the MDP specifics to the near-optimal value function and policy and seek to approximate it with a hypernetwork that can generate near-optimal value functions and policies, given the parameters of the MDP. We show that, under certain conditions, this mapping can be considered as a supervised learning problem. We empirically evaluate the effectiveness of our method for zero-shot transfer to new reward and transition dynamics on a series of continuous control tasks from DeepMind Control Suite. Our method demonstrates significant improvements over baselines from multitask and meta RL approaches.
ANSEL Photobot: A Robot Event Photographer with Semantic Intelligence
Dmitriy Rivkin
Nikhil Kakodkar
Oliver Limoyo
Francois Hogan
Our work examines the way in which large language models can be used for robotic planning and sampling in the context of automated photograp… (voir plus)hic documentation. Specifically, we illustrate how to produce a photo-taking robot with an exceptional level of semantic awareness by leveraging recent advances in general purpose language (LM) and vision-language (VLM) models. Given a high-level description of an event we use an LM to generate a natural-language list of photo descriptions that one would expect a photographer to capture at the event. We then use a VLM to identify the best matches to these descriptions in the robot's video stream. The photo portfolios generated by our method are consistently rated as more appropriate to the event by human evaluators than those generated by existing methods.
Normalizing Flow Ensembles for Rich Aleatoric and Epistemic Uncertainty Modeling
Lucas Berry
Learning active tactile perception through belief-space control
Jean-François Tremblay
Johanna Hansen
Francois Hogan
Robot operating in an open world can encounter novel objects with unknown physical properties, such as mass, friction, or size. It is desira… (voir plus)ble to be able to sense those property through contact-rich interaction, before performing downstream tasks with the objects. We propose a method for autonomously learning active tactile perception policies, by learning a generative world model leveraging a differentiable bayesian filtering algorithm, and designing an information- gathering model predictive controller. We test the method on three simulated tasks: mass estimation, height estimation and toppling height estimation. Our method is able to discover policies which gather information about the desired property in an intuitive manner.